cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A136021 Sum of the proper prime divisors of all numbers up to 10^n.

Original entry on oeis.org

0, 19, 1047, 64373, 4481640, 340900331, 27436000061, 2292176360707, 196818634871899, 17246903703574357, 1534951275195670059, 138293592048140425181, 12583738258227621100170, 1154435823206834353336284, 106638384745041347295504523
Offset: 0

Views

Author

Enoch Haga, Dec 10 2007

Keywords

Comments

The sum of the distinct prime factors less than k for all 1 <= k <= 10^n, as tabulated for the individual k in A105221.

Examples

			a(1)=19 because 10^1=10 and the factors to be summed are 2 for 4, added to 2 and 3 for 6, added to 2 for 8, added to 3 for 9, added to 2 and 5 for 10.
		

Crossrefs

Programs

  • Maple
    A105221 := proc(n) local a,pfs,i ; a :=0 ; pfs := ifactors(n)[2] ; for i in pfs do if op(1,i) <> 1 and op(1,i) <> n then a := a+op(1,i) ; fi ; od: RETURN(a) ; end: A136021 := proc(n) add(A105221(i),i=2..10^n) ; end: for n from 1 do print(n,A136021(n)) ; od: # R. J. Mathar, Dec 12 2007
  • Mathematica
    f[n_] := Plus @@ (First@# & /@ FactorInteger@ n); k = 2; s = 0; lst = {}; Do[While[k < 10^n + 1, If[ ! PrimeQ@k, s = s + f@k]; k++ ]; AppendTo[ lst, s]; Print[{n, s}], {n, 8}] (* Robert G. Wilson v, Aug 06 2010 *)
  • UBASIC
    10 'distinct prime factors of composites <=10^n 20 S=0:N=N+1:Z=N\2 30 'print N; 40 for F=1 to Z:Q=N/F: if Q<>int(Q) then 60 50 S=S+F: if F=prmdiv(F) and F>1 then C=C+1:G=G+F 60 next F 70 'print C,G 80 if N=10^1 or N=10^2 or N=10^3 or N=10^4 or N=10^5 or N=10^6 or N=10^7 then print G:stop 90 C=0 100 goto 20

Formula

a(n) = Sum_{k=1..10^n} A105221(k). - R. J. Mathar, Dec 12 2007
a(n) = Sum_{prime p<10^n} p*floor((10^n-p)/p) = A006880(n)*10^n - A024934(10^n) - A046731(n). - Max Alekseyev, Jan 30 2012

Extensions

One more term from R. J. Mathar, Dec 12 2007
Edited by R. J. Mathar, Apr 17 2009
a(7) & a(8) from Robert G. Wilson v, Aug 06 2010
a(9)-a(11) from Max Alekseyev, Jan 30 2012
a(12)-a(14) from Hiroaki Yamanouchi, Jun 29 2014

A136025 Sum of distinct proper prime divisors of odd integers below 10^n.

Original entry on oeis.org

3, 373, 24307, 1691682, 127867801, 10233538789, 850896280551, 72812857079241, 6363727756215813, 565232434009370012, 50843507342073211151, 4620323131256374760046, 423405369424475640435621, 39074878176445767411791424
Offset: 1

Views

Author

Enoch Haga, Dec 12 2007

Keywords

Comments

Through 10^5 about 37.5% of total sums for all integers N comprise sums of odd N and the remaining 62.5% of even N.

Examples

			a(0)=3 because the only odd N <=10^1-1 having a prime factor is 9 and its factor is 3 and sum is 3.
		

Crossrefs

Programs

  • Maple
    A105221 := proc(n) local a,ifs,p; ifs := ifactors(n)[2] ; a := 0 ; for p in ifs do if op(1,p) <> 1 and op(1,p) <> n then a := a+op(1,p) ; fi ; od: RETURN(a) ; end: A136025 := proc(n) local a,k ; a := 0 ; for k from 5 to 10^n-1 by 2 do a := a+A105221(k) ; od: RETURN(a) ; end: for n from 1 do print(A136025(n)); od: # R. J. Mathar, Jan 29 2008

Formula

a(n) = sum_{k=1,2,...,A093143(n)} A105221(2k-1). - R. J. Mathar, Jan 29 2008
a(n) = sum_{prime p, 3<=p<10^n} p*floor((10^n-p)/(2p)). - Max Alekseyev, Jan 30 2012

Extensions

a(6) from R. J. Mathar, Jan 29 2008
a(7)-a(11) from Max Alekseyev, Jan 30 2012
a(12)-a(14) from Hiroaki Yamanouchi, Jul 06 2014
Showing 1-2 of 2 results.