Original entry on oeis.org
19, 1028, 63326, 4417267, 336418691, 27095099730, 2264740360646, 194526458511192, 17050085068702458, 1517704371492095702, 136758640772944755122, 12445444666179480674989, 1141852084948606732236114, 105483948921834512942168239
Offset: 1
a(1)=19 because at 10^0 the prime divisor sum in A136021 is zero, so 19-0=19. From the second sum in A136021, 1047, subtract 19, so that a(2) = 1028.
a(6) from R. J. Mathar, Dec 12 2007
A136023
The largest prime factor among all composites <= 10^n.
Original entry on oeis.org
5, 47, 499, 4999, 49999, 499979, 4999999, 49999991, 499999993, 4999999937, 49999999967, 499999999979, 4999999999937, 49999999999981, 499999999999999, 4999999999999997, 49999999999999993, 499999999999999931, 4999999999999999963, 49999999999999999951
Offset: 1
a(3)=499 because it is the largest prime factor of all k<=10^3; the largest k in that interval with this factor is k=2*499 = 998.
A136024
Largest prime factor of odd composites less than 10^n.
Original entry on oeis.org
3, 31, 331, 3331, 33331, 333331, 3333331, 33333331, 333333313, 3333333323, 33333333329, 333333333323, 3333333333301, 33333333333323, 333333333333307, 3333333333333301, 33333333333333323
Offset: 1
a(1)=31 because it is the largest factor of odd N <= 10^2-1. The value of odd N where this factor first occurs is 3*31 = 93.
A136025
Sum of distinct proper prime divisors of odd integers below 10^n.
Original entry on oeis.org
3, 373, 24307, 1691682, 127867801, 10233538789, 850896280551, 72812857079241, 6363727756215813, 565232434009370012, 50843507342073211151, 4620323131256374760046, 423405369424475640435621, 39074878176445767411791424
Offset: 1
a(0)=3 because the only odd N <=10^1-1 having a prime factor is 9 and its factor is 3 and sum is 3.
-
A105221 := proc(n) local a,ifs,p; ifs := ifactors(n)[2] ; a := 0 ; for p in ifs do if op(1,p) <> 1 and op(1,p) <> n then a := a+op(1,p) ; fi ; od: RETURN(a) ; end: A136025 := proc(n) local a,k ; a := 0 ; for k from 5 to 10^n-1 by 2 do a := a+A105221(k) ; od: RETURN(a) ; end: for n from 1 do print(A136025(n)); od: # R. J. Mathar, Jan 29 2008
Showing 1-4 of 4 results.
Comments