A136097 a(n) = A135951(n) /[(2^(n+1)-1) * 2^(n*(n-1)/2)].
1, -1, 5, -93, 6477, -1733677, 1816333805, -7526310334829, 124031223014725741, -8152285307423733458541, 2140200604371078953284092525, -2245805993494514875022552272042605, 9423041917569791458584837551185555483245
Offset: 0
Keywords
Programs
-
Mathematica
Table[(-1)^n QBinomial[2n, n, 2]/(2^(n+1) - 1), {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
-
PARI
a(n)=local(q=2,A=matrix(2*n+1,2*n+1,n,k,if(n>=k,if(n==1 || k==1, 1, prod(j=n-k+1, n-1, 1-q^j)/prod(j=1, k-1, 1-q^j))))^-1); A[2*n+1,n+1]/( (q^(n+1)-1)/(q-1) * q^(n*(n-1)/2) )
Formula
Conjecture: the n-th central term of the matrix inverse of the triangle of Gaussian binomial coefficients in q is divisible by [(q^(n+1)-1)/(q-1) * q^(n*(n-1)/2)] for n>=0 and integer q > 1.
Comments