cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136124 Triangle read by rows: T(n,k) = (-1)^(n+k)*Sum_{j=1..k} s(n,j), where s(n,j) are the signed Stirling numbers of the first kind (n >= 2; 1 <= k <= n-1; s(n,j) = A008275(n,j)).

Original entry on oeis.org

1, 2, 1, 6, 5, 1, 24, 26, 9, 1, 120, 154, 71, 14, 1, 720, 1044, 580, 155, 20, 1, 5040, 8028, 5104, 1665, 295, 27, 1, 40320, 69264, 48860, 18424, 4025, 511, 35, 1, 362880, 663696, 509004, 214676, 54649, 8624, 826, 44, 1, 3628800, 6999840, 5753736, 2655764
Offset: 2

Views

Author

Emeric Deutsch, Dec 23 2007

Keywords

Comments

Sum of entries in row n = n!/2 = A001710(n). T(n,1) = (n-1)! = A000142(n-1). Columns 2,3,4 and 5 yield A001705,A001706,A001707 and A001708, respectively.
See A143491 for the interpretation of these numbers as restricted Stirling numbers of the first kind. See A049444 for a signed version of this array. - Peter Bala, Aug 25 2008
With offset n=0, k=0: triangle T(n,k), read by rows, given by [2,1,3,2,4,3,5,4,6,5,...] DELTA [1,0,1,0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 29 2011
With offset n=0, k=0: T(n,k) is the number of ways to seat n people at any number of round tables and serve exactly k of the tables water, some number of the remaining tables red wine, and the rest of the tables white wine. - Geoffrey Critzer, Mar 13 2015

Examples

			T(6,3)=71 because (-1)^9*[s(6,1)+s(6,2)+s(6,3)]=-(-120+274-225)=71.
Triangle starts:
    1;
    2,   1;
    6,   5,   1;
   24,  26,   9,   1;
  120, 154,  71,  14,   1;
		

Crossrefs

Programs

  • Maple
    A136124_row := proc(n) local k,j; `if`(n=0,1,seq((-1)^(n+1-k)*add(stirling1(n+1,j), j=1..k),k=1..n)) end: seq(print(A136124_row(r)),r=1..6); # Peter Luschny, Sep 29 2011
    with(combinat): T:=proc(n, k) options operator, arrow: (-1)^(n+k)*(sum(stirling1(n,j),j=1..k)) end proc: for n from 2 to 11 do seq(T(n,k),k=1..n-1) end do; # yields sequence in triangular form
  • Mathematica
    nn = 10; Map[Select[#, # > 0 &] &,Range[0,nn]!CoefficientList[Series[Exp[(2 + y) Log[1/(1 - x)]], {x, 0, nn}], {x,y}]] // Flatten (* Geoffrey Critzer, Mar 13 2015 *)

Formula

E.g.f.: Sum[(1/n!)T(n,k)x^n*t^k, k=1..n-1, n>=2]=1/[(1+t)(1-x)^t]-(1+tx)/(1+t). Generating polynomial of row n = t*Product(j+t, j=2..n-1). T(n,k) is the sum of all products of n-k-1 different integers taken from {2,3,...,n-1}. For example, T(6,3) = 2*3 + 2*4 + 2*5 + 3*4 + 3*5 + 4*5 = 71.