A136159 A Chebyshev polynomial triangle of the first kind defined by T(n+1,x) = 3x*T(n,x) - T(n-1,x).
1, 1, 3, -1, 9, -4, 27, -15, 1, 81, -54, 7, 243, -189, 36, -1, 729, -648, 162, -10, 2187, -2187, 675, -66, 1, 6561, -7290, 2673, -360, 13, 19683, -24057, 10206, -1755, 105, -1, 59049, -78732, 37908, -7938, 675, -16
Offset: 0
Examples
First few rows of the polynomials are: 1; x; 3x^2 - 1; 9x^3 - 4x; 27x^4 - 15x^2 + 1; 81x^5 - 54x^3 + 7x; 243x^6 - 189x^4 + 36x^2 - 1; 729x^7 - 648x^5 + 162x^3 - 10x; ...
Crossrefs
Programs
-
PARI
P(n) = if (n==0, 1, if (n==1, x, 3*x*P(n-1) - P(n-2))); row(n) = select(x->x!=0, Vec(P(n))); \\ Michel Marcus, Apr 15 2018
Formula
T(0,x) = 1, T(1,x) = x, T(n+1,x) = 3x*T(n,x) - T(n-1,x).
G.f: (l - tx)/(1 - 3tx + t^2).
Given triangle A136158, shift down columns to allow for (1, 1, 2, 2, 3, 3, ...) terms in each row.
Extensions
Corrected and extended by Philippe Deléham, Sep 12 2009
Keyword tabf set by Michel Marcus, Apr 15 2018
Comments