A136207 Primes p such that p-6 or p+6 is prime.
5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 151, 157, 163, 167, 173, 179, 191, 193, 197, 199, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 277, 283, 307, 311, 313, 317, 331, 337
Offset: 1
Keywords
Links
- Lei Zhou, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Math, Sexy Primes. [The definition in this webpage is unsatisfactory, because it defines a "sexy prime" as a pair of primes.- _N. J. A. Sloane_, Mar 07 2021]
- Wikipedia, Sexy Primes
Programs
-
Maple
isA136207 := proc(n) if isprime(n) then if isprime(n+6) or isprime(n-6) then true; else false; end if; else false ; end if; end proc: A136207 := proc(n) option remember; local a; if n = 1 then 5 ; else a := nextprime(procname(n-1)) ; while true do if isA136207(a) then return a; else a := nextprime(a) ; end if; end do: end if; end proc: seq(A136207(n),n=1..80) ; # R. J. Mathar, Jun 10 2024
-
Mathematica
dd = 6; DistancePrimesQ1 = (PrimeQ[ # ] && PrimeQ[ # + dd]) &; DistancePrimesQ2 = (PrimeQ[ # ] && PrimeQ[ # - dd] && (# > dd)) &; DistancePrimesQQ = (DistancePrimesQ1[ # ] || DistancePrimesQ2[ # ]) &; DistancePrimes = Select[Range[ # ], DistancePrimesQQ] &; DistancePrimes[1000] Alternative by Lei Zhou: p = 3; Table[While[p = NextPrime[p]; ! (PrimeQ[p - 6] || PrimeQ[p + 6])]; p, {n, 1, 100}] Select[Prime[Range[3,100]],AnyTrue[#+{6,-6},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 22 2019 *)
Comments