A136214 Triangle U, read by rows, where U(n,k) = Product_{j=k..n-1} (3*j+1) for n > k with U(n,n) = 1.
1, 1, 1, 4, 4, 1, 28, 28, 7, 1, 280, 280, 70, 10, 1, 3640, 3640, 910, 130, 13, 1, 58240, 58240, 14560, 2080, 208, 16, 1, 1106560, 1106560, 276640, 39520, 3952, 304, 19, 1, 24344320, 24344320, 6086080, 869440, 86944, 6688, 418, 22, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 4, 4, 1; 28, 28, 7, 1; 280, 280, 70, 10, 1; 3640, 3640, 910, 130, 13, 1; 58240, 58240, 14560, 2080, 208, 16, 1; 1106560, 1106560, 276640, 39520, 3952, 304, 19, 1; ... Matrix inverse begins: 1; -1, 1; 0, -4, 1; 0, 0, -7, 1; 0, 0, 0, -10, 1; 0, 0, 0, 0, -13, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Magma
[[n eq 0 select 1 else k eq n select 1 else (&*[3*j+1: j in [k..n-1]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Jun 14 2019
-
Maple
nmax:=8; for n from 0 to nmax do U(n, n):=1 od: for n from 0 to nmax do for k from 0 to n do if n > k then U(n, k) := mul((3*j+1), j = k..n-1) fi: od: od: for n from 0 to nmax do seq(U(n, k), k=0..n) od: seq(seq(U(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jul 04 2011, revised Nov 23 2012
-
Mathematica
Table[Product[3*j+1, {j,k,n-1}], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 14 2019 *)
-
PARI
T(n,k)=if(n==k,1,prod(j=k,n-1,3*j+1))
-
Sage
def T(n, k): if (k==n): return 1 else: return product(3*j+1 for j in (k..n-1)) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jun 14 2019
Comments