A136235 Matrix square of triangle W = A136231; also equals P^6, where P = triangle A136220.
1, 6, 1, 48, 12, 1, 495, 150, 18, 1, 6338, 2160, 306, 24, 1, 97681, 36103, 5643, 516, 30, 1, 1767845, 694079, 115917, 11592, 780, 36, 1, 36839663, 15164785, 2657946, 282122, 20655, 1098, 42, 1, 870101407, 372225541, 67708113, 7502470, 580780
Offset: 0
Examples
This triangle, W^2, begins: 1; 6, 1; 48, 12, 1; 495, 150, 18, 1; 6338, 2160, 306, 24, 1; 97681, 36103, 5643, 516, 30, 1; 1767845, 694079, 115917, 11592, 780, 36, 1; 36839663, 15164785, 2657946, 282122, 20655, 1098, 42, 1; 870101407, 372225541, 67708113, 7502470, 580780, 33480, 1470, 48, 1; ... where column 0 of W^2 = column 1 of W = triangle A136231.
Crossrefs
Programs
-
PARI
{T(n,k)=local(P=Mat(1),U=Mat(1),W=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1])))); U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1]))); W=P^3;));(W^2)[n+1,k+1]}
Formula
Column k of W^2 (this triangle) = column 1 of W^(k+1), where W = P^3 and P = triangle A136220.