A136239 Forced end points ( -Infinity ->-1) integration of A137286: Triangle of coefficients of Integrated recursive orthogonal Hermite polynomials given in Hochstadt's book : P(x, n) = x*P(x, n - 1) - n*P(x, n - 2).
1, 0, 1, -1, 0, 1, -1, -3, 0, 1, 9, 0, -6, 0, 1, -1, 27, 0, -10, 0, 1, -19, 0, 65, 0, -15, 0, 1, -1, -165, 0, 135, 0, -21, 0, 1, 399, 0, -624, 0, 252, 0, -28, 0, 1, -1, 2145, 0, -1750, 0, 434, 0, -36, 0, 1
Offset: 1
Examples
{1}, {0, 1}, {-1, 0, 1}, {-1, -3, 0, 1}, {9, 0, -6, 0, 1}, {-1, 27, 0, -10, 0, 1}, {-19, 0, 65, 0, -15, 0, 1}, {-1, -165, 0, 135, 0, -21, 0,1}, {399, 0, -624, 0, 252, 0, -28, 0, 1}, {-1, 2145, 0, -1750, 0, 434, 0, -36, 0, 1}
References
- page 8 and pages 42 - 43 : Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986
Crossrefs
Cf. A137286.
Formula
P(x, n) = x*P(x, n - 1) - n*P(x, n - 2); L(x,n)=Integrate[Exp[y^2/4]*p(y,n-1),{y,-Infinity,x}]/(-2*Exp[ -x^2/4]) Here the weight function is taken as the square root of the Hermite weight function Exp[ -x^2/2] and then divided out of the end result.
Comments