A136247 Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial h(n,x) with h(0,x)=1, h(1,x)=1-x and recursively h(n,x) = 1 + n -(1-x)*(1-h(n-1,x)) - n*h(n-2,x).
1, 1, -1, 1, -1, 1, 1, 2, 2, -1, 1, 6, -4, -3, 1, 1, -4, -20, 6, 4, -1, 1, -40, 8, 44, -8, -5, 1, 1, -12, 188, -6, -80, 10, 6, -1, 1, 308, 136, -546, -10, 130, -12, -7, 1, 1, 416, -1864, -628, 1256, 50, -196, 14, 8, -1, 1, -2664, -3640, 6696, 1984, -2506, -126, 280, -16, -9, 1
Offset: 0
Examples
1; 1, -1; 1, -1, 1; 1, 2, 2, -1; 1, 6, -4, -3, 1; 1, -4, -20,6, 4, -1; 1, -40, 8, 44, -8, -5, 1; 1, -12, 188, -6, -80,10, 6, -1; 1, 308, 136, -546, -10, 130, -12, -7, 1; 1, 416, -1864, -628, 1256, 50, -196, 14, 8, -1; 1, -2664, -3640, 6696, 1984, -2506, -126,280, -16, -9, 1;
References
- Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986, pp. 8, 42-43.
Crossrefs
Cf. A137286.
Programs
-
Maple
h := proc(n,x) if n = 0 then 1 ; elif n = 1 then 1-x ; else 1+n-(1-x)*(1-procname(n-1,x)) -n*procname(n-2,x) ; expand(%) ; end if; end proc: A136247 := proc(n,k) coeftayl(h(n,x),x=0,k) ; end proc: seq(seq(A136247(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Dec 04 2011
-
Mathematica
Clear[h, a, n, x, y, c, d] (*Solve linear Shabat transform for Hermite type recursion*) Solve[c*x0 + d - x*(c*x1 + d) + n*(c*x2 + d) == 0, x0] c = -1; d = 1; Solve[y = c*x + d == 0, x] h[x, 0] = 1; h[x, 1] = 1 - x; h[x_, n_] := h[x, n] = -(-1 - n + (1 - x) - (1 - x)* h[ x, n - 1] + n *h[x, n - 2]); Table[ExpandAll[h[x, n]], {n, 0, 10}]; a = Table[CoefficientList[h[x, n], x], {n, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[h[x, n], x]], {n, 0, 10}];
Comments