cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A136667 Triangle read by rows: T(n, k) is the coefficient of x^k in the polynomial 1 - T_n(x)^2, where T_n(x) is the n-th Hermite polynomial of the Hochstadt kind (A137286) as related to the generalized Chebyshev in a Shabat way (A123583): p(x,n)=x*p(x,n-1)-p(x,n-2); q(x,n)=1-p(x,n)^2.

Original entry on oeis.org

0, 1, 0, -1, -3, 0, 4, 0, -1, 1, 0, -25, 0, 10, 0, -1, -63, 0, 144, 0, -97, 0, 18, 0, -1, 1, 0, -1089, 0, 924, 0, -262, 0, 28, 0, -1, -2303, 0, 8352, 0, -9489, 0, 3576, 0, -574, 0, 40, 0, -1, 1, 0, -77841, 0, 103230, 0, -49291, 0, 10548, 0, -1099, 0, 54, 0, -1, -147455, 0, 748800, 0, -1215585, 0, 699630, 0, -188043, 0
Offset: 1

Views

Author

Roger L. Bagula, Apr 02 2008

Keywords

Comments

Row sums are {0, 0, 0, -15, 1, -399, -399, -14399, -78399, -639999, -12959999}.

Examples

			The irregular triangle begins
  {0},
  {1, 0, -1},
  {-3, 0, 4, 0, -1},
  {1, 0, -25, 0, 10, 0, -1},
  {-63, 0, 144, 0, -97, 0, 18, 0, -1},
  {1, 0, -1089, 0, 924, 0, -262,0, 28, 0, -1},
  {-2303, 0, 8352, 0, -9489, 0, 3576, 0, -574, 0, 40, 0, -1},
  {1, 0, -77841, 0, 103230, 0, -49291, 0, 10548,0, -1099, 0, 54, 0, -1},
  ...
		

References

  • Defined: page 8 and pages 42 - 43: Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986
  • G. B. Shabat and I. A. Voevodskii, Drawing curves over number fields, The Grothendieck Festschift, vol. 3, Birkhäuser, 1990, pp. 199-22

Crossrefs

Programs

  • Mathematica
    P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = x*P[x, n - 1] - n*P[x, n - 2]; Q[x_, n_] := Q[x, n] = 1 - P[x, n]^2; Table[ExpandAll[Q[x, n]], {n, 0, 10}]; a = Join[{{0}}, Table[CoefficientList[Q[x, n], x], {n, 0, 10}]]; Flatten[a]
  • PARI
    polx(n) = if (n == 0, 1, if (n == 1, x, x*polx(n - 1) - n*polx(n - 2)));
    tabf(nn) = {for (n = 0, nn, pol = 1 - polx(n)^2; for (i = 0, 2*n, print1(polcoeff(pol, i), ", "); ); print(); ); }  \\ Michel Marcus, Feb 26 2018

Formula

out=1-A137286(x,n)^2; p(x,n)=x*p(x,n-1)-p(x,n-2); q(x,n)=1-p(x,n)^2.

Extensions

Keyword changed to tabf by Michel Marcus, Feb 26 2018

A140815 Irregular triangle read by rows: the n-th row gives the coefficients of Phi(n, 1-x), where Phi(n, x) is the n-th cyclotomic polynomial.

Original entry on oeis.org

-1, 0, -1, 2, 1, -3, 3, 1, -2, 2, 1, -5, 10, -10, 5, 1, -1, 1, 1, -7, 21, -35, 35, -21, 7, 1, -4, 6, -4, 2, 1, -6, 15, -21, 18, -9, 3, 1, -3, 4, -2, 1, 1, -11, 55, -165, 330, -462, 462, -330, 165, -55, 11, 1, -4, 5, -2, 1, 1, -13, 78, -286, 715, -1287, 1716, -1716, 1287, -715, 286, -78, 13, 1, -5, 11, -13, 9, -3, 1, 1, -7, 21
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Jul 16 2008

Keywords

Crossrefs

Programs

  • PARI
    row(n)=Vec(polcyclo(n,1-x)); \\ Joerg Arndt, Feb 26 2018

Formula

t(n,m) = Coefficients(Cyclotomic(n,1-x)).

Extensions

Corrected and edited by Joerg Arndt, Feb 26 2018
Showing 1-2 of 2 results.