A136289 Start with three pennies touching each other on a tabletop. In each generation, add pennies subject to the rule that a penny can be placed only when (at least) two pennies are already in position to determine its position; sequence gives number of pennies added at generation n.
3, 3, 6, 9, 9, 12, 15, 15, 18, 21, 21, 24, 27, 27, 30, 33, 33, 36, 39, 39, 42, 45, 45, 48, 51, 51, 54, 57, 57, 60, 63, 63, 66, 69, 69, 72, 75, 75, 78, 81, 81, 84, 87, 87, 90, 93, 93, 96, 99, 99, 102, 105, 105, 108, 111, 111, 114, 117, 117, 120, 123, 123, 126, 129, 129, 132
Offset: 0
Keywords
Examples
After four generations we have: .............4...3...4............ .................................. .......4...3...2...2...3...4...... .................................. .........3...1...0...1...3........ .................................. .......4...2...0...0...2...4...... .................................. .........3...2...1...2...3........ .................................. ...........4...3...3...4.......... .................................. .................4................
Links
- Craig Knecht, Every triple contains 1,2,3 starting with 3 at the top.
- Kival Ngaokrajang, Illustration of the flower of life pattern
- Sacred Geometry, Flower of life
Crossrefs
Cf. A136290.
Programs
-
Maple
isAdjac := proc(a,b,c) abs(b-a) = 1 and abs(c-b)=1 and abs(a-c)=1 ; end: neighbrs := proc(x) local y,phi ; y := {} ; for phi from 0 to 5 do y := y union {x+expand(exp(I*phi*Pi/3)) } ; od: end: doesMatch2 := proc(genLin,x) local p ; for p in combinat[choose](genLin,2) do if isAdjac(x,op(1,p),op(2,p)) then RETURN(true) ; fi ; od: RETURN(false) ; end: A136289 := proc(gen) local newgen,o,candid,x,genLin,g ; newgen := {}; genLin := {} ; for g in gen do genLin := genLin union g ; od: for o in op(-1,gen) do candid := neighbrs(o) ; for x in candid do if not x in newgen then if not x in genLin then if doesMatch2(genLin,x) then newgen := newgen union {x} ; fi ; fi ; fi ; od: od: RETURN( [op(gen),newgen] ) ; end: gen := [{0,1,expand(exp(I*Pi/3))}] : for n from 1 do printf("%d,", nops(op(n,gen)) ) ; gen := A136289(gen) od: # R. J. Mathar, Apr 15 2008
Formula
Conjecture: a(n) = a(n-3) + 6, implying g.f. 3*(1+x^2)/((1-x)^2*(1+x+x^2)). - R. J. Mathar, Apr 15 2008
Conjecture: a(n) = 2n + 1 + ((n+2) mod 3). - Wesley Ivan Hurt, Jul 07 2013
Conjecture: a(n) = 3*floor(2*n/3) + 3. - Jon E. Schoenfield, Jul 30 2015
Conjecture: a(n) = 2*(n+1+sin(2*(n+1)*Pi/3)/sqrt(3)). - Wesley Ivan Hurt, Sep 27 2017
Extensions
More terms from R. J. Mathar, Apr 15 2008
More terms from John W. Layman, Jun 26 2008
Comments