A136319 Decimal expansion of [phi, phi, ...] = (phi + sqrt(phi^2 + 4))/2.
2, 0, 9, 5, 2, 9, 3, 9, 8, 5, 2, 2, 3, 9, 1, 4, 4, 9, 2, 7, 4, 6, 8, 1, 6, 7, 1, 8, 8, 6, 6, 2, 8, 2, 5, 8, 3, 1, 6, 6, 4, 1, 1, 5, 2, 7, 5, 7, 3, 8, 3, 6, 8, 9, 4, 4, 0, 4, 7, 7, 5, 5, 4, 6, 6, 5, 4, 5, 3, 7, 8, 5, 0, 7, 6, 3, 9, 7, 8, 6, 1, 3, 7, 5, 2, 1, 8, 3, 6, 1, 4, 3, 0, 7, 4, 7, 1, 3, 5, 3
Offset: 1
Links
- R. Evans, H. Hollmann, C. Krattenthaler and Q. Xiang, Gauss sums, Jacobi sums, and p-ranks of cyclic difference sets, J. Combin. Theory Ser. A, 87.1 (1999), 74-119.
- Shiva Samieinia, Digital straight line segments and curves. Licentiate Thesis. Stockholm University, Department of Mathematics, Report 2007:6.
- Shiva Samieinia, The number of Khalimsky-continuous functions on intervals, Rocky Mountain J. Math., 40.5 (2010), 1667-1687.
- Eric Weisstein's World of Mathematics, Silver Ratio
- Wikipedia, Silver ratio
Programs
-
Maple
Digits:=100: evalf((1+sqrt(5))*(1+sqrt(7-2*sqrt(5)))/4); # Wesley Ivan Hurt, Apr 22 2014
-
Mathematica
RealDigits[(GoldenRatio+Sqrt[GoldenRatio^2+4])/2,10,120][[1]] (* Harvey P. Dale, Jun 20 2021 *)
Formula
(phi + sqrt(phi^2 + 4))/2.
Also, (1/4)*(1 + sqrt(5) + sqrt(H)), where H = 22 + 2*sqrt(5). (corrected by Jonathan Sondow, Apr 18 2014)
phi*(1 + sqrt(7 - 2*sqrt(5)))/2. - Geoffrey Caveney, Apr 19 2014
exp(arcsinh(cos(Pi/5))). - Geoffrey Caveney, Apr 22 2014
cos(Pi/5) + sqrt(1+cos(Pi/5)^2). - Geoffrey Caveney, Apr 23 2014
Extensions
Previous Mathematica program corrected and replaced by Harvey P. Dale, Jun 20 2021
Comments