A136343 Number of partitions of n such that each summand is greater than or equal to the sum of the next two summands.
1, 1, 2, 2, 4, 4, 6, 7, 10, 11, 14, 16, 21, 23, 29, 32, 40, 43, 52, 57, 69, 75, 88, 96, 113, 122, 141, 153, 177, 190, 216, 233, 265, 285, 320, 345, 387, 415, 461, 495, 551, 589, 650, 695, 767, 818, 896, 957, 1048, 1116, 1214, 1293, 1407, 1495, 1620, 1721, 1864
Offset: 0
Keywords
Examples
a(5) = 4 because 4 of the 7 partitions of 5 have the required property: {5} {4,1} {3,2} {3,1,1}. The other 3 partitions of 5: {2,2,1} {2,1,1,1} and {1,1,1,1,1} each have an element which is < the sum of next two.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3500
Programs
-
Maple
b:= proc(n, i, j) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n-i, min(n-i, i, `if`(j=0, i, j-i)), i) +b(n, i-1, j))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..60); # Alois P. Heinz, Jul 29 2017
-
Mathematica
b[n_, i_, j_]:=b[n, i, j]=If[n==0, 1, If[i<1, 0, b[n - i, Min[n - i, i, If[j==0, i, j - i]], i] + b[n, i - 1, j]]]; Table[b[n, n, 0], {n, 0, 60}] (* Indranil Ghosh, Aug 01 2017, after Maple code *)
Formula
From Alois P. Heinz, Sep 18 2018: (Start)
a(n) = [x^(2n) y^n] 1/Product_{j>=2} (1-y*x^A000045(j)).
a(n) = A319394(2n,n). (End)
Extensions
Conjectured g.f. removed and a(0), a(35)-a(56) added by Alois P. Heinz, Jul 29 2017
Comments