A136349
Numbers k of the form Product_{j=1..m} prime(j) such that k-1 is prime.
Original entry on oeis.org
6, 30, 2310, 30030, 304250263527210, 23768741896345550770650537601358310
Offset: 1
a(3)=30 where the prime factors are 2,3,5; since N-1=29, prime, N=30 is added to the sequence.
-
Select[FoldList[Times,1,Prime[Range[70]]],PrimeQ[#-1]&] (* Harvey P. Dale, Jan 09 2011 *)
-
c=0;t=1;vector(7,n,until( ispseudoprime( -1+t*=prime(c++)),);t)
A136352
Primorials P for which neither P-1 nor P+1 is prime.
Original entry on oeis.org
510510, 9699690, 223092870, 6469693230, 7420738134810, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070, 117288381359406970983270, 7858321551080267055879090
Offset: 1
13# = 30030 is preceded by a prime but is not followed by a prime. 17# = 510510 is neither preceded nor followed by a prime.
-
Select[FoldList[Times, 1, Prime[Range[19]]],!PrimeQ[#+1]&&!PrimeQ[#-1]&] (* James C. McMahon, May 08 2025 *)
A136350
Primorial numbers #p such that (#p)-1 is composite.
Original entry on oeis.org
210, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070, 117288381359406970983270
Offset: 1
a(1)=210 because 209=A002110(4)-1 is not prime.
-
Select[FoldList[Times, 1, Prime[Range[18]]],CompositeQ[#-1]&] (* James C. McMahon, May 08 2025 *)
A136353
First odd composite N divisible by precisely the first n odd primes with N-2 prime.
Original entry on oeis.org
9, 15, 105, 1155, 15015, 255255, 4849845, 111546435, 9704539845, 100280245065, 18551845337025, 152125131763605, 98120709987525225, 7071232499767651215, 16294579238595022365, 33648306127698721183725, 527797716117331369424715
Offset: 1
The first odd prime is 3, 3*3-2 = 7 is prime so a(1) = 9.
The product of the first two odd primes is 15, and 15-2 is prime, so a(2) = 15.
-
a[n_]:=(c=Product[Prime[k],{k,2,n+1}];For[m=1,!(!PrimeQ[c (2m-1)]&&PrimeQ[c(2m-1)-2]&&Length[FactorInteger[c(2m-1)]]==n),m++ ];c(2m-1));Table[a[n],{n,20}] (* Enoch Haga, Jul 02 2009 *)
-
sm(n,x)=forprime(p=2,x, n/=p^valuation(n,p)); n==1
a(n)=my(m=factorback(primes(n+1)[2..n+1]),k,p=prime(n+1)); while(!isprime(k++*m-2) && sm(k,p),); k*m \\ Charles R Greathouse IV, Sep 14 2015
Showing 1-4 of 4 results.
Comments