cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136376 a(n) = n*F(n) + (n-1)*F(n-1).

Original entry on oeis.org

1, 3, 8, 18, 37, 73, 139, 259, 474, 856, 1529, 2707, 4757, 8307, 14428, 24942, 42941, 73661, 125951, 214739, 365166, 619508, 1048753, 1771943, 2988457, 5031843, 8459504, 14201994, 23811349, 39873841, 66695539, 111440227, 186016962
Offset: 1

Views

Author

Gary W. Adamson, Dec 28 2007

Keywords

Comments

For n>2, mod 2 = (0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, ...), i.e., two evens followed by four odds (repeating).
Inverse binomial transform of A117202: (1, 4, 15, 52, ...). - Gary W. Adamson, Sep 03 2008

Examples

			a(5) = 37 = a(n)*F(n) + (n-1)*F(n-1) = 5*5 + 4*3 = 25 + 12.
		

Crossrefs

Programs

  • Mathematica
    Table[n*Fibonacci[n] + (n - 1)*Fibonacci[n - 1], {n, 1, 50}] (* Stefan Steinerberger, Dec 28 2007 *)
  • PARI
    a(n)=n*fibonacci(n)+(n-1)*fibonacci(n-1) \\ Charles R Greathouse IV, Oct 07 2015
    
  • PARI
    Vec(x*(1+x)*(1+x^2)/(x^2+x-1)^2 + O(x^100)) \\ Altug Alkan, Oct 28 2015

Formula

a(n) = n*F(n) + (n-1)*F(n-1). Equals the matrix product A128064 (unsigned) * A000045.
From R. J. Mathar, Jul 13 2009: (Start)
a(n) = A045925(n) + A045925(n-1).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4).
G.f.: x*(1+x)*(1+x^2)/(x^2+x-1)^2. (End)
a(n) = A238344(3n-2,n-1). - Alois P. Heinz, Apr 11 2014
From Vladimir Reshetnikov, Oct 28 2015: (Start)
a(n) = ((n+1)*F(n)+(n-1)*L(n))/2, where L(n) are Lucas numbers (A000032).
E.g.f.: (exp(phi*x)*(phi^3*x-1)-exp(-x/phi)*(phi^3+x)/phi)/(sqrt(5)*phi)+1, where phi=(1+sqrt(5))/2.
(End)

Extensions

More terms from Stefan Steinerberger, Dec 28 2007