A136391 a(n) = n*F(n) - (n-1)*F(n-1), where the F(j)'s are the Fibonacci numbers (F(0)=0, F(1)=1).
1, 1, 4, 6, 13, 23, 43, 77, 138, 244, 429, 749, 1301, 2249, 3872, 6642, 11357, 19363, 32927, 55861, 94566, 159776, 269469, 453721, 762793, 1280593, 2147068, 3595422, 6013933, 10048559, 16773139, 27971549, 46605186, 77587084, 129063117, 214531397, 356346557
Offset: 1
Examples
a(6) = 23 = 6*F(6) - 5*F(5) = 6*8 - 5*5 = 48 - 25.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
Programs
-
Julia
# The function 'fibrec' is defined in A354044. function A136391(n) a, b = fibrec(n - 1) n*b - (n - 1)*a end println([A136391(n) for n in 1:35]) # Peter Luschny, May 18 2022
-
Maple
with(combinat): seq(n*fibonacci(n)-(n-1)*fibonacci(n-1),n=1..30); # Emeric Deutsch, Jan 01 2008
-
Mathematica
Table[n Fibonacci[n] - (n-1) Fibonacci[n-1], {n, 1, 20}] (* Vladimir Reshetnikov, Oct 28 2015 *)
-
PARI
Vec(x*(1-x)*(1+x^2)/(1-x-x^2)^2 + O(x^100)) \\ Altug Alkan, Oct 28 2015
Formula
From R. J. Mathar, Nov 25 2008: (Start)
G.f.: x*(1 - x)*(1 + x^2)/(1 - x - x^2)^2.
Recurrence: a(n+1) = a(n) + a(n-1) + L(n-2) for n>1, where L = A000032 (see proof in Comments section). - Giuseppe Coppoletta, Sep 01 2014
E.g.f.: (exp(x*phi)/phi+exp(-x/phi)*phi)*(x+1)/sqrt(5)-1, where phi=(1+sqrt(5))/2. - Vladimir Reshetnikov, Oct 28 2015
a(n) = F(n-1) + n*F(n-2). - Bruno Berselli, Jul 26 2017
Extensions
More terms from Emeric Deutsch, Jan 01 2008
Comments