cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136394 Triangle read by rows: T(n,k) is the number of permutations of an n-set having k cycles of size > 1 (0<=k<=floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 20, 3, 1, 84, 35, 1, 409, 295, 15, 1, 2365, 2359, 315, 1, 16064, 19670, 4480, 105, 1, 125664, 177078, 56672, 3465, 1, 1112073, 1738326, 703430, 74025, 945, 1, 10976173, 18607446, 8941790, 1346345, 45045, 1, 119481284, 216400569, 118685336
Offset: 0

Views

Author

Vladeta Jovovic, May 03 2008

Keywords

Examples

			Triangle (n,k) begins:
  1;
  1;
  1,    1;
  1,    5;
  1,   20,    3;
  1,   84,   35;
  1,  409,  295,  15;
  1, 2365, 2359, 315;
  ...
		

Crossrefs

Programs

  • Maple
    egf:= proc(k::nonnegint) option remember; x-> exp(x)* ((-x-ln(1-x))^k)/k! end; T:= (n,k)-> coeff(series(egf(k)(x), x=0, n+1), x, n) *n!; seq(seq(T(n,k), k=0..n/2), n=0..30); # Alois P. Heinz, Aug 14 2008
    # second Maple program:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(b(n-i)*
          `if`(i>1, x, 1)*binomial(n-1, i-1)*(i-1)!, i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Sep 25 2016
    # third Maple program:
    T:= proc(n, k) option remember; `if`(k<0 or k>2*n, 0,
          `if`(n=0, 1, add(T(n-i, k-`if`(i>1, 1, 0))*
           mul(n-j, j=1..i-1), i=1..n)))
        end:
    seq(seq(T(n,k), k=0..n/2), n=0..15);  # Alois P. Heinz, Jul 16 2017
  • Mathematica
    max = 12; egf = Exp[x*(1-y)]/(1-x)^y; s = Series[egf, {x, 0, max}, {y, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]*n!; t[0, 0] = t[1, 0] = 1; Table[t[n, k], {n, 0, max}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Jan 28 2014 *)

Formula

E.g.f.: exp(x*(1-y))/(1-x)^y. Binomial transform of triangle A008306. exp(x)*((-x-log(1-x))^k)/k! is e.g.f. of k-th column.
From Alois P. Heinz, Jul 13 2017: (Start)
T(2n,n) = A001147(n).
T(2n+1,n) = A051577(n) = (2*n+3)!!/3 = A001147(n+2)/3. (End)
From Alois P. Heinz, Aug 17 2023: (Start)
Sum_{k=0..floor(n/2)} k * T(n,k) = A001705(n-1) for n>=1.
Sum_{k=0..floor(n/2)} (-1)^k * T(n,k) = A159964(n-1) for n>=1. (End)