cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136415 Numbers n such that a type-3 Gaussian normal basis over GF(2^n) exists.

Original entry on oeis.org

4, 6, 12, 14, 20, 22, 46, 52, 54, 60, 70, 76, 92, 94, 116, 124, 126, 140, 166, 174, 180, 182, 204, 206, 214, 220, 230, 236, 244, 252, 262, 276, 284, 286, 292, 294, 302, 332, 340, 350, 356, 364, 372, 374, 390, 404, 412, 430, 460, 484, 494, 510, 516, 526, 532
Offset: 1

Views

Author

Joerg Arndt, Mar 31 2008

Keywords

Comments

A type-t Gaussian normal basis exists for GF(2^n) if p=n*t+1 is prime and gcd(n,(p-1)/ord(2 mod p))==1.
Type-1 basis correspond to sequence A071642, type-2 basis to A054639.

Examples

			12 is in the list because 3*12+1=37 is prime and the index of 2 mod 37 (==36/ord(2 mod 37)==1, 2 is a generator mod 37) is coprime to 12.
		

Crossrefs

Programs

  • PARI
    gauss_test(n, t)=
    { /* test whether a type-t Gaussian normal basis exists for GF(2^n) */
      local( p, r2, g, d );
      p = t*n + 1;
      if ( !isprime(p), return( 0 ) );
      if ( p<=2, return( 0 ) );
      r2 = znorder( Mod(2, p) );
      d = (p-1)/r2;
      g = gcd(d, n);
      return ( if ( 1==g, 1, 0) );
    }
    /* generate this sequence: */
    t=3;ct=1;for(n=1,10^7,if(gauss_test(n,t), print1(n,", ");ct+=1;if(ct>200,break())))