cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136431 Hyperfibonacci square number array a(k,n) = F(n)^(k), read by ascending antidiagonals (k, n >= 0).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 4, 3, 0, 1, 4, 7, 7, 5, 0, 1, 5, 11, 14, 12, 8, 0, 1, 6, 16, 25, 26, 20, 13, 0, 1, 7, 22, 41, 51, 46, 33, 21, 0, 1, 8, 29, 63, 92, 97, 79, 54, 34, 0, 1, 9, 37, 92, 155, 189, 176, 133, 88, 55, 0, 1, 10, 46, 129, 247, 344, 365, 309, 221, 143, 89, 0, 1
Offset: 0

Views

Author

Jonathan Vos Post, Apr 01 2008

Keywords

Comments

Main diagonal is A108081. Antidiagonal sums form A027934. - Gerald McGarvey, Oct 01 2008
Seen as triangle read by rows: T(n,0) = 1, T(n,n) = A000045(n) and for 0 < k < n: T(n,k) = T(n-1,k-1) + T(n-1,k). - Reinhard Zumkeller, Jul 16 2013

Examples

			The array F(n)^(k) begins:
.....|n=0|n=1|.n=2|.n=3|.n=4.|.n=5.|..n=6.|.n=7..|..n=8..|..n=9..|.n=10..|.in.OEIS
k=0..|.0.|.1.|..1.|..2.|...3.|...5.|....8.|...13.|....21.|....34.|....55.|.A000045
k=1..|.0.|.1.|..2.|..4.|...7.|..12.|...20.|...33.|....54.|....88.|...143.|.A000071
k=2..|.0.|.1.|..3.|..7.|..14.|..26.|...46.|...79.|...133.|...221.|...364.|.A001924
k=3..|.0.|.1.|..4.|.11.|..25.|..51.|...97.|..176.|...309.|...530.|...894.|.A014162
k=4..|.0.|.1.|..5.|.16.|..41.|..92.|..189.|..365.|...674.|..1204.|..2098.|.A014166
k=5..|.0.|.1.|..6.|.22.|..63.|.155.|..344.|..709.|..1383.|..2587.|..4685.|.A053739
k=6..|.0.|.1.|..7.|.29.|..92.|.247.|..591.|.1300.|..2683.|..5270.|..9955.|.A053295
k=7..|.0.|.1.|..8.|.37.|.129.|.376.|..967.|.2267.|..4950.|.10220.|.20175.|.A053296
k=8..|.0.|.1.|..9.|.46.|.175.|.551.|.1518.|.3785.|..8735.|.18955.|.39130.|.A053308
k=9..|.0.|.1.|.10.|.56.|.231.|.782.|.2300.|.6085.|.14820.|.33775.|.72905.|.A053309
		

Crossrefs

Programs

  • Haskell
    a136431 n k = a136431_tabl !! n !! k
    a136431_row n = a136431_tabl !! n
    a136431_tabl = map fst $ iterate h ([0], 1) where
       h (row, fib) = (zipWith (+) ([0] ++ row) (row ++ [fib]), last row)
    -- Reinhard Zumkeller, Jul 16 2013
  • Maple
    A136431 := proc(k,n) local x ; coeftayl(x/(1-x-x^2)/(1-x)^k,x=0,n) ; end: for d from 0 to 20 do for n from 0 to d do printf("%d,",A136431(d-n,n)) ; od: od: # R. J. Mathar, Apr 25 2008
  • Mathematica
    t[n_, k_] := CoefficientList[Series[x/(1 - x - x^2)/(1 - x)^k, {x, 0, n + 1}], x][[n + 1]]; Table[ t[n, k - n], {k, 0, 11}, {n, 0, k}] // Flatten
    (* To view the table above *) Table[ t[n, k], {k, 0, 9}, {n, 0, 10}] // TableForm

Formula

a(k,n) = Apply partial sum operator k times to Fibonacci numbers.
For k > 0 and n > 1, a(k,n) = a(k-1,n) + a(k,n-1). - Gerald McGarvey, Oct 01 2008