A136431 Hyperfibonacci square number array a(k,n) = F(n)^(k), read by ascending antidiagonals (k, n >= 0).
0, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 4, 3, 0, 1, 4, 7, 7, 5, 0, 1, 5, 11, 14, 12, 8, 0, 1, 6, 16, 25, 26, 20, 13, 0, 1, 7, 22, 41, 51, 46, 33, 21, 0, 1, 8, 29, 63, 92, 97, 79, 54, 34, 0, 1, 9, 37, 92, 155, 189, 176, 133, 88, 55, 0, 1, 10, 46, 129, 247, 344, 365, 309, 221, 143, 89, 0, 1
Offset: 0
Examples
The array F(n)^(k) begins: .....|n=0|n=1|.n=2|.n=3|.n=4.|.n=5.|..n=6.|.n=7..|..n=8..|..n=9..|.n=10..|.in.OEIS k=0..|.0.|.1.|..1.|..2.|...3.|...5.|....8.|...13.|....21.|....34.|....55.|.A000045 k=1..|.0.|.1.|..2.|..4.|...7.|..12.|...20.|...33.|....54.|....88.|...143.|.A000071 k=2..|.0.|.1.|..3.|..7.|..14.|..26.|...46.|...79.|...133.|...221.|...364.|.A001924 k=3..|.0.|.1.|..4.|.11.|..25.|..51.|...97.|..176.|...309.|...530.|...894.|.A014162 k=4..|.0.|.1.|..5.|.16.|..41.|..92.|..189.|..365.|...674.|..1204.|..2098.|.A014166 k=5..|.0.|.1.|..6.|.22.|..63.|.155.|..344.|..709.|..1383.|..2587.|..4685.|.A053739 k=6..|.0.|.1.|..7.|.29.|..92.|.247.|..591.|.1300.|..2683.|..5270.|..9955.|.A053295 k=7..|.0.|.1.|..8.|.37.|.129.|.376.|..967.|.2267.|..4950.|.10220.|.20175.|.A053296 k=8..|.0.|.1.|..9.|.46.|.175.|.551.|.1518.|.3785.|..8735.|.18955.|.39130.|.A053308 k=9..|.0.|.1.|.10.|.56.|.231.|.782.|.2300.|.6085.|.14820.|.33775.|.72905.|.A053309
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- H. Belbachir, A. Belkhir, Combinatorial Expressions Involving Fibonacci, Hyperfibonacci, and Incomplete Fibonacci Numbers, J. Int. Seq. 17 (2014), Article #14.4.3.
- Ayhan Dil and Istvan Mezo, A Symmetric Algorithm for Hyperharmonic and Fibonacci Numbers, arXiv:0803.4388 [math.NT], 2008.
- Ayhan Dil and Istvan Mezo, A Symmetric Algorithm for Hyperharmonic and Fibonacci Numbers, Applied Mathematics and Computation 206(2) (2008), 942-951.
- Eric Weisstein's World of Mathematics, Steenrod Algebra
Crossrefs
Programs
-
Haskell
a136431 n k = a136431_tabl !! n !! k a136431_row n = a136431_tabl !! n a136431_tabl = map fst $ iterate h ([0], 1) where h (row, fib) = (zipWith (+) ([0] ++ row) (row ++ [fib]), last row) -- Reinhard Zumkeller, Jul 16 2013
-
Maple
A136431 := proc(k,n) local x ; coeftayl(x/(1-x-x^2)/(1-x)^k,x=0,n) ; end: for d from 0 to 20 do for n from 0 to d do printf("%d,",A136431(d-n,n)) ; od: od: # R. J. Mathar, Apr 25 2008
-
Mathematica
t[n_, k_] := CoefficientList[Series[x/(1 - x - x^2)/(1 - x)^k, {x, 0, n + 1}], x][[n + 1]]; Table[ t[n, k - n], {k, 0, 11}, {n, 0, k}] // Flatten (* To view the table above *) Table[ t[n, k], {k, 0, 9}, {n, 0, 10}] // TableForm
Formula
a(k,n) = Apply partial sum operator k times to Fibonacci numbers.
For k > 0 and n > 1, a(k,n) = a(k-1,n) + a(k,n-1). - Gerald McGarvey, Oct 01 2008
Comments