A136480 Number of trailing equal digits in binary representation of n.
1, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 5, 5, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 6, 6, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 5, 5, 1, 1, 2, 2, 1, 1, 3, 3
Offset: 0
Links
- James Spahlinger, Table of n, a(n) for n = 0..10000
- Francis Laclé, 2-adic parity explorations of the 3n+ 1 problem, hal-03201180v2 [cs.DM], 2021.
- Index entries for sequences related to binary expansion of n
Programs
-
Haskell
a136480 0 = 1 a136480 n = a007814 $ n + mod n 2 -- Reinhard Zumkeller, Jul 22 2014
-
JavaScript
for (n=1;n<120;n++) { m=n*n+n; c=0; while (m%2==0) {m/=2;c++;} document.write(c+", "); } // Jon Perry, Sep 12 2014
-
Maple
A136480 := proc(n) if n = 0 then 1; else A007814(n*(n+1)) ; end if; end proc: seq( A136480(n),n=0..80) ; # R. J. Mathar, Mar 20 2023
-
Mathematica
Length[Last[Split[IntegerDigits[#,2]]]]&/@Range[0,140] (* Harvey P. Dale, Mar 31 2011 *)
-
PARI
a(n)=if (n, valuation(n+n%2,2), 1) \\ Charles R Greathouse IV, Oct 14 2013
-
Python
def A136480(n): return (~(m:=n+(n&1))& m-1).bit_length() # Chai Wah Wu, Jul 08 2022
Formula
a(n) = A050603(n-1) for n>0;
a(2*n + n mod 2) = a(n) + 1.
For n>0: a(n) = A007814(n + n mod 2).
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=0..m} a(k) = 2. - Amiram Eldar, Sep 15 2022
Comments