cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136484 Number of unit square lattice cells inside quadrant of origin centered circle of diameter 2n+1.

Original entry on oeis.org

0, 1, 3, 6, 13, 19, 28, 37, 48, 64, 77, 94, 110, 131, 152, 172, 199, 226, 253, 281, 308, 343, 377, 412, 447, 488, 528, 567, 612, 654, 703, 750, 796, 847, 902, 957, 1013, 1068, 1129, 1187, 1252, 1313, 1378, 1446, 1511, 1582, 1650, 1725, 1800, 1877, 1955, 2034
Offset: 0

Views

Author

Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008

Keywords

Comments

Number of unit square lattice cells inside quadrant of origin centered circle of radius n+1/2.

Examples

			a(2) = 3 because a circle of radius 2+1/2 in the first quadrant encloses (2,1), (1,1), (1,2).
		

Crossrefs

Programs

  • Magma
    A136484:= func< n | n eq 0 select 0 else (&+[Floor(Sqrt((n+1/2)^2-j^2)): j in [1..n]]) >;
    [A136484(n): n in [0..100]]; // G. C. Greubel, Jul 29 2023
    
  • Mathematica
    Table[Sum[Floor[Sqrt[(n+1/2)^2 - k^2]], {k,n}], {n,0,100}]
  • SageMath
    def A136484(n): return sum(floor(sqrt((n+1/2)^2-k^2)) for k in range(1, n+1))
    [A136484(n) for n in range(101)] # G. C. Greubel, Jul 29 2023

Formula

a(n) = Sum_{k=1..n} floor(sqrt((n+1/2)^2 - k^2)).
a(n) = (1/2) * A136515(n).
a(n) = (1/4) * A136486(n).
a(n) = A136483(2*n+1).
Lim_{n -> oo} a(n)/(n^2) -> Pi/16 (A019683).