cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136489 Triangle T(n, k) = 3*A007318(n, k) - 2*A034851(n, k).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 8, 10, 8, 1, 1, 9, 18, 18, 9, 1, 1, 12, 27, 40, 27, 12, 1, 1, 13, 39, 67, 67, 39, 13, 1, 1, 16, 52, 112, 134, 112, 52, 16, 1, 1, 17, 68, 164, 246, 246, 164, 68, 17, 1, 1, 20, 85, 240, 410, 504, 410, 240, 85, 20, 1
Offset: 0

Views

Author

Gary W. Adamson, Jan 01 2008

Keywords

Examples

			First few rows of the triangle are:
  1;
  1,   1;
  1,   4,   1;
  1,   5,   5,   1;
  1,   8,  10,   8,   1;
  1,   9,  18,  18,   9,   1;
  1,  12,  27,  40,  27,  12,   1;
  1,  13,  39,  67,  67,  39,  13,   1;
  1,  16,  52, 112, 134, 112,  52,  16,   1;
  1,  17,  68, 164, 246, 246, 164,  68,  17,   1;
  ...
		

Crossrefs

Cf. A034851, A042948, A077957, A122746 (row sums).

Programs

  • Magma
    A136489:= func< n,k | 2*Binomial(n,k) - Binomial(n mod 2, k mod 2)*Binomial(Floor(n/2), Floor(k/2)) >;
    [A136489(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2023
    
  • Mathematica
    T[n_, k_]:= 2*Binomial[n,k] -Binomial[Mod[n,2], Mod[k,2]]*Binomial[Floor[n/2], Floor[k/2]];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 01 2023 *)
  • SageMath
    def A136489(n,k): return 2*binomial(n,k) - binomial(n%2, k%2)*binomial(n//2, k//2)
    flatten([[A136489(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 01 2023

Formula

T(n, k) = 3*A007318(n, k) - 2*A034851(n, k).
Sum_{k=0..n} T(n, k) = A122746(n).
From G. C. Greubel, Aug 01 2023: (Start)
T(n, k) = 2*A007318(n, k) - A051159(n, k).
T(n, k) = T(n-1, k) + T(n-1, k-1) if k is even.
T(n, n-k) = T(n, k).
T(n, n-1) = A042948(n).
Sum_{k=0..n} (-1)^k * T(n, k) = 2*[n=0] - A077957(n). (End)