cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A136503 Column 2 of triangle A136502.

Original entry on oeis.org

1, -4, 26, -308, 6959, -306888, 26732904, -4628215312, 1597488685120, -1101039613155676, 1516536435306750724, -4175994577753360618608, 22993788379965461938093352, -253190775338116964702467771168
Offset: 0

Views

Author

Paul D. Hanna, Jan 01 2008

Keywords

Crossrefs

Cf. A107354 (column 0 of A136502).

Programs

  • PARI
    {a(n)=local(M=matrix(n+3,n+3,r,c,binomial(2^(c-1),r-c)));(M^-1)[n+3,3]}

Formula

G.f.: 1 = Sum_{n>=0} a(n)*x^n*(1+x)^(2^(n+2)).

A136504 Row sums of triangle A136502.

Original entry on oeis.org

1, 0, 1, -3, 19, -223, 5024, -221357, 19276981, -3337101203, 1151813749025, -793860037771900, 1093434531716214447, -3010922236710802264555, 16578683647583849207539977, -182552322688781602767983229935
Offset: 0

Views

Author

Paul D. Hanna, Jan 01 2008

Keywords

Crossrefs

Cf. A136502.

Programs

  • PARI
    {a(n)=local(M=matrix(n+1,n+1,r,c,binomial(2^(c-1),r-c))); sum(k=0,n,(M^-1)[n+1,k+1])}

Formula

G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n*(1+x)^(2^n).

A136501 Triangle, read by rows, where T(n,k) = C(2^k,n-k) for n>=k>=0.

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 0, 1, 4, 1, 0, 0, 6, 8, 1, 0, 0, 4, 28, 16, 1, 0, 0, 1, 56, 120, 32, 1, 0, 0, 0, 70, 560, 496, 64, 1, 0, 0, 0, 56, 1820, 4960, 2016, 128, 1, 0, 0, 0, 28, 4368, 35960, 41664, 8128, 256, 1, 0, 0, 0, 8, 8008, 201376, 635376, 341376, 32640, 512, 1, 0, 0, 0, 1, 11440, 906192, 7624512, 10668000, 2763520, 130816, 1024, 1
Offset: 0

Views

Author

Paul D. Hanna, Jan 01 2008

Keywords

Examples

			Triangle begins:
  1;
  1, 1;
  0, 2, 1;
  0, 1, 4,  1;
  0, 0, 6,  8,     1;
  0, 0, 4, 28,    16,      1;
  0, 0, 1, 56,   120,     32,       1;
  0, 0, 0, 70,   560,    496,      64,        1;
  0, 0, 0, 56,  1820,   4960,    2016,      128,       1;
  0, 0, 0, 28,  4368,  35960,   41664,     8128,     256,      1;
  0, 0, 0,  8,  8008, 201376,  635376,   341376,   32640,    512,    1;
  0, 0, 0,  1, 11440, 906192, 7624512, 10668000, 2763520, 130816, 1024, 1;
		

Crossrefs

Cf. A014070 (central terms), A121688 (row sums), A136502 (matrix inverse).

Programs

  • Magma
    [Binomial(2^k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 15 2021
    
  • Mathematica
    Table[Binomial[2^k, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 15 2021 *)
  • PARI
    T(n,k)=binomial(2^k,n-k)
    
  • Sage
    flatten([[binomial(2^k, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 15 2021
Showing 1-3 of 3 results.