A136505 a(n) = binomial(2^n + 1, n).
1, 3, 10, 84, 2380, 237336, 82598880, 99949406400, 422825581068000, 6318976181520699840, 337559127276933693852160, 65182103393445184131620004864, 45946437874792132748338425828443136
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
Magma
[Binomial(2^n +1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
Maple
A136505:= n-> binomial(2^n+1,n); seq(A136505(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
Mathematica
Table[Binomial[2^n+1,n], {n,0,15}] (* Vaclav Kotesovec, Jul 02 2016 *)
-
PARI
{a(n)=polcoeff(sum(i=0,n,(1+2^i*x +x*O(x^n))*log(1+2^i*x +x*O(x^n))^i/i!),n)}
-
Sage
[binomial(2^n +1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
Formula
G.f.: A(x) = Sum_{n>=0} (1 + 2^n*x) * log(1 + 2^n*x)^n/n!.
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016