cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136520 a(n) = Sum_{k=1..n} A001263(n,k) * A027656(k).

Original entry on oeis.org

1, 1, 3, 13, 44, 146, 530, 1975, 7314, 27262, 102802, 390138, 1486064, 5682756, 21812436, 83976075, 324115550, 1253795510, 4859960402, 18871869302, 73398851448, 285882923196, 1114943553308, 4353426835238, 17016813133124, 66581653586476, 260750813149140, 1022023318047220
Offset: 1

Views

Author

Gary W. Adamson, Jan 02 2008

Keywords

Comments

Narayana transform of A027656.

Examples

			a(4) = 13 = (1, 6, 6, 1) dot (1, 0, 2, 0) = (1 + 0 + 12 + 0).
Triangle A001263(n,k) * A027656(k+1) and the rows sums:
  1;                                              :     1;
  1,  0;                                          :     1;
  1,  0,    2;                                    :     3;
  1,  0,   12,  0;                                :    13;
  1,  0,   40,  0,     3;                         :    44;
  1,  0,  100,  0,    45,  0;                     :   146;
  1,  0,  210,  0,   315,  0,     4;              :   530;
  1,  0,  392,  0,  1470,  0,   112,  0;          :  1975;
  1,  0,  672,  0,  5292,  0,  1344,  0,    5;    :  7314;
  1,  0, 1080,  0, 15876,  0, 10080,  0,  225,  0 : 27262;
		

Crossrefs

Programs

  • Magma
    A136520:= func< n | (&+[((j+1)/(2*j+1))*Binomial(n,2*j)*Binomial(n-1,2*j): j in [0..Floor((n-1)/2)]]) >;
    [A136520(n): n in [1..40]]; // G. C. Greubel, Jul 27 2023
    
  • Mathematica
    A136520[n_]:= Sum[Binomial[n-1, 2*k]*Binomial[n, 2*k]*((k+1)/(2*k+1)), {k,0,Floor[(n-1)/2]}];
    Table[A136520[n], {n, 40}] (* G. C. Greubel, Jul 27 2023 *)
  • SageMath
    def A136520(n): return sum(((j+1)/(2*j+1))*binomial(n,2*j)*binomial(n-1, 2*j) for j in range((n+1)//2))
    [A136520(n) for n in range(1,41)] # G. C. Greubel, Jul 27 2023

Formula

a(n) = Sum_{k=1..n} A001263(n,k) * A027656(k).
a(n) = Sum_{j=0..floor((n-1)/2)} ((j+1)/(2*j+1))*binomial(n, 2*j) * binomial(n-1, 2*j). - G. C. Greubel, Jul 27 2023

Extensions

Terms a(11) onward added by G. C. Greubel, Jul 27 2023