A136523 Triangle T(n,k) = A053120(n,k) + A053120(n-1,k), read by rows.
1, 1, 1, -1, 1, 2, -1, -3, 2, 4, 1, -3, -8, 4, 8, 1, 5, -8, -20, 8, 16, -1, 5, 18, -20, -48, 16, 32, -1, -7, 18, 56, -48, -112, 32, 64, 1, -7, -32, 56, 160, -112, -256, 64, 128, 1, 9, -32, -120, 160, 432, -256, -576, 128, 256, -1, 9, 50, -120, -400, 432, 1120, -576, -1280, 256, 512
Offset: 0
Examples
Triangle begins as: 1; 1, 1; -1, 1, 2; -1, -3, 2, 4; 1, -3, -8, 4, 8; 1, 5, -8, -20, 8, 16; -1, 5, 18, -20, -48, 16, 32; -1, -7, 18, 56, -48, -112, 32, 64; 1, -7, -32, 56, 160, -112, -256, 64, 128; 1, 9, -32, -120, 160, 432, -256, -576, 128, 256; -1, 9, 50, -120, -400, 432, 1120, -576, -1280, 256, 512;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
function A053120(n,k) if ((n+k) mod 2) eq 1 then return 0; elif n eq 0 then return 1; else return (-1)^Floor((n-k)/2)*(n/(n+k))*Binomial(Floor((n+k)/2), k)*2^k; end if; end function; A136523:= func< n,k | A053120(n,k) + A053120(n-1,k) >; [A136523(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 26 2023
-
Mathematica
A053120[n_, k_]:= Coefficient[ChebyshevT[n,x], x, k]; T[n_, k_]:= T[n, k]= A053120[n,k] + A053120[n-1,k]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
-
SageMath
def A053120(n,k): if (n+k)%2==1: return 0 elif n==0: return 1 else: return floor((-1)^((n-k)//2)*(n/(n+k))*binomial((n+k)//2, k)*2^k) def A136523(n,k): return A053120(n,k) + A053120(n-1,k) flatten([[A136523(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 26 2023
Formula
Sum_{k=0..n} T(n, k) = A040000(n).
From G. C. Greubel, Jul 26 2023: (Start)
T(n, 0) = A057077(n).
T(n, 1) = (-1)^floor((n-1)/2) * A109613(n-1).
T(n, 2) = (-1)^floor((n-2)/2) * A008794(n-1).
T(n, 3) = (-1)^floor((n+1)/2) * A000330(n-1).
T(n, n) = A011782(n).
T(n, n-1) = A011782(n-1).
T(n, n-2) = -A001792(n-2).
T(n, n-4) = A001793(n-3).
T(n, n-6) = -A001794(n-6).
Sum_{k=0..n} (-1)^k*T(n,k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000007(n) + [n=1].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (-1)^floor(n/2)*A025192(floor(n/2)). (End)
Extensions
Edited by G. C. Greubel, Jul 26 2023