A136572 Triangle read by rows: row n consists of n zeros followed by n!.
1, 0, 1, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 120, 0, 0, 0, 0, 0, 0, 720, 0, 0, 0, 0, 0, 0, 0, 5040, 0, 0, 0, 0, 0, 0, 0, 0, 40320, 0, 0, 0, 0, 0, 0, 0, 0, 0, 362880, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3628800, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 39916800
Offset: 0
Examples
First few rows of the triangle: 1; 0, 1; 0, 0, 2; 0, 0, 0, 6; 0, 0, 0, 0, 24; 0, 0, 0, 0, 0, 120; ...
Links
- Reinhard Zumkeller, Rows n = 0..100 of triangle, flattened
Programs
-
Haskell
a136572 n k = a136572_tabl !! n !! k a136572_row n = a136572_tabl !! n a136572_tabl = map fst $ iterate f ([1], 1) where f (row, i) = (0 : map (* i) row, i + 1) -- Reinhard Zumkeller, Nov 18 2012
-
Mathematica
Table[PadLeft[{n!},n+1,0],{n,0,20}]//Flatten (* Harvey P. Dale, Oct 22 2016 *)
Formula
Triangle, n zeros followed by n! T(n,k): n! * 0^(n-k), 0 <= k <= n.
As an infinite lower triangular matrix, A000142 (1, 1, 2, 6, 24, 120, ...) in the main diagonal and the rest zeros.
Comments