cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136605 Triangle read by rows: T(n,k) = number of forests on n unlabeled nodes with k edges (n>=1, 0<=k<=n-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 2, 4, 6, 6, 1, 1, 2, 4, 7, 11, 11, 1, 1, 2, 4, 8, 14, 23, 23, 1, 1, 2, 4, 8, 15, 29, 46, 47, 1, 1, 2, 4, 8, 16, 32, 60, 99, 106, 1, 1, 2, 4, 8, 16, 33, 66, 128, 216, 235, 1, 1, 2, 4, 8, 16, 34, 69, 143, 284, 488, 551, 1, 1, 2, 4, 8, 16, 34, 70, 149, 315, 636, 1121, 1301
Offset: 1

Views

Author

N. J. A. Sloane, May 09 2008

Keywords

Examples

			Triangle begins:
1
1,1
1,1,1
1,1,2,2
1,1,2,3,3
1,1,2,4,6,6 <- T(6,3) = 4 forests on 6 nodes with 3 edges.
1,1,2,4,7,11,11
1,1,2,4,8,14,23,23
1,1,2,4,8,15,29,46,47
1,1,2,4,8,16,32,60,99,106
1,1,2,4,8,16,33,66,128,216,235
1,1,2,4,8,16,34,69,143,284,488,551
1,1,2,4,8,16,34,70,149,315,636,1121,1301
1,1,2,4,8,16,34,71,152,330,710,1467,2644,3159
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 58-59.

Crossrefs

Row sums give A005195. Rightmost diagonal gives A000055. Cf. A001858, A138464.
Rows converge to A215930. Reflected table is A095133. - Alois P. Heinz, Apr 11 2014

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<=1, n, (add(add(
          d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1))
        end:
    t:= n-> `if`(n=0, 1, b(n)-(add(b(k)*b(n-k), k=0..n)-
            `if`(irem(n, 2)=0, b(n/2), 0))/2):
    g:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, expand(add(binomial(t(i)+j-1, j)*
           g(n-i*j, i-1)*x^j, j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, n-i), i=0..n-1))(g(n$2)):
    seq(T(n), n=1..14);  # Alois P. Heinz, Apr 11 2014
  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}])/(n-1)]; t[n_] := If[n == 0, 1, b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2]; g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0, Expand[Sum[Binomial[t[i] + j - 1, j]*g[n - i*j, i-1]*x^j, {j, 0, n/i}]]]]; T[n_] := CoefficientList[g[n, n], x] // Reverse // Most; Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Apr 16 2014, after Alois P. Heinz *)

Formula

G.f.: Product_{k>=1} 1/(1 - y^(k-1)*x^k)^A000055(k). - Geoffrey Critzer, Nov 10 2014