A136640 A limited integer Devil's staircase from a winding number function.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 9, 13, 16, 18, 20, 22, 24, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 46, 47, 49, 50, 51, 51, 53, 54, 56, 58, 58, 60, 61, 63, 65, 67, 67, 67, 67, 67, 67, 70, 72, 73, 75, 76, 77, 79
Offset: 1
Links
- Per Bak, Commensurate phases, incommensurate phases and the devil's staircase, Rep. Prog. Phys. 45 (1982) pp.587-629.
- Eric Weisstein's World of Mathematics, Devil's Staircase.
Programs
-
Mathematica
f[{omega_,t_}]:={omega,t+omega-Sin[2Pi t]/(2Pi)}; WindingNumber[n_,{omega_,t_}]:=(Nest[f,{omega,t},n][[2]]-t)/n; a=Table[Floor[1+200*WindingNumber[1000,{omega,0}]], {omega,0,1,.005}]
Formula
a(n) = floor(1+200*Winding_Number(Omega)): 0<=omega<=1;in steps of 1/200
Comments