A141367 G.f.: Sum_{n>=0} arcsinh(4^n*x)^n/n!, a power series in x having only integer coefficients.
1, 4, 128, 43680, 178946048, 9382409745280, 6558834518571089920, 62879485860387254833099776, 8439542720341303996200869198561280, 16110026846830031883594370688522189192189952
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 4*x + 128*x^2 + 43680*x^3 + 178946048*x^4 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..40
Programs
-
Mathematica
Table[SeriesCoefficient[(Sqrt[1 + x^2] + x)^(4^n), {x, 0, n}], {n, 0, 25}] (* G. C. Greubel, Apr 15 2017 *)
-
PARI
{a(n)=polcoeff(sum(k=0,n, asinh(4^k*x +x*O(x^n))^k/k!),n)}
-
PARI
{a(n)=polcoeff((x+sqrt(1+x^2 +x*O(x^n)))^(4^n),n)}
Formula
a(n) = [x^n] [ sqrt(1+x^2) + x ]^(4^n).
More generally, the following coefficient of x^n in the series:
[x^n] Sum_{n>=0} arcsinh(q^n*x)^n/n! = [x^n] [ sqrt(1+x^2) + x ]^(q^n) is an integer for any even integer q.
Comments