cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A136653 G.f.: A(x) satisfies: coefficient of x^n in A(x)^(n+1)/(n+1) = 2^(n*(n-1)/2).

Original entry on oeis.org

1, 1, 1, 4, 39, 748, 27162, 1880872, 252273611, 66358216668, 34506398937158, 35644762692112792, 73356520492898454022, 301274559225693420690360, 2471654510727312089903896948, 40527708183358718551543295827536, 1328579216048284168977214446788083699
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2008

Keywords

Comments

a(n) is the number of graphs on vertices 1,...,n such that, when these vertices are arranged counterclockwise around a circle and edges are drawn as straight line segments, the resulting diagram is connected. - Jonathan Novak (j2novak(AT)math.uwaterloo.ca), Apr 30 2010
In this interpretation, both intersecting (set theoretically) and crossing (topologically) edges are considered connected. - Gus Wiseman, Feb 23 2019

Examples

			G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 39*x^4 + 748*x^5 + 27162*x^6 +...
Let F(x) = 1 + x + 2*x^2 + 8*x^3 + 64*x^4 + 1024*x^5 +...+ 2^(n*(n-1)/2)*x^n +..
then A(x) = F(x/A(x)), A(x*F(x)) = F(x).
Coefficient of x^n in A(x)^(n+1)/(n+1) = 2^(n*(n-1)/2),
as can be seen by the main diagonal in the array of
coefficients in the initial powers of A(x):
A^1: [(1), 1, 1, 4, 39, 748, 27162, 1880872, 252273611,...;
A^2: [1, (2), 3, 10, 87, 1582, 55914, 3817876, 508370795,...;
A^3: [1, 3, (6), 19, 147, 2517, 86398, 5813550, 768378627,...;
A^4: [1, 4, 10, (32), 223, 3572, 118778, 7870640, 1032387787,...;
A^5: [1, 5, 15, 50, (320), 4771, 153245, 9992130, 1300492845,...;
A^6: [1, 6, 21, 74, 444, (6144), 190023, 12181278, 1572792585,...;
A^7: [1, 7, 28, 105, 602, 7728, (229376), 14441659, 1849390375,...;
A^8: [1, 8, 36, 144, 802, 9568, 271616, (16777216), 2130394591,...;
A^9: [1, 9, 45, 192, 1053, 11718, 317112, 19192320, (2415919104),...;
dividing each diagonal term in row n by (n+1) gives 2^(n*(n-1)/2).
The diagonal above the main diagonal gives coefficients of l.g.f.:
log(F(x)) = x + 3*x^2/2 + 19*x^3/3 + 223*x^4/4 + 4771*x^5/5 +...
		

Crossrefs

Programs

  • Mathematica
    max = 15; s = x*Sum[2^(k*(k-1)/2)*x^k, {k, 0, max}] + O[x]^(max+2); x/InverseSeries[s] + O[x]^(max+1) // CoefficientList[#, x]& (* Jean-François Alcover, Sep 03 2017 *)
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    bicmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],Intersection@@#!={}&],Select[Subsets[stn,{2}],croXQ]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],Length[bicmpts[#]]<=1]&]],{n,0,5}] (* Gus Wiseman, Feb 23 2019 *)
  • PARI
    a(n)=polcoeff(x/serreverse(x*sum(k=0,n,2^(k*(k-1)/2)*x^k +x*O(x^n))),n)

Formula

G.f.: A(x) = x/Series_Reversion( x*Sum_{k=0..n} 2^(k(k-1)/2)*x^k ).
Equals the free cumulant sequence corresponding to A006125. - Jonathan Novak (j2novak(AT)math.uwaterloo.ca), Apr 30 2010

Extensions

Name changed and part of prior name moved to formula section by Paul D. Hanna, Sep 19 2013

A136652 L.g.f.: A(x) = log( Sum_{n>=0} 2^[n(n-1)/2]*x^n ).

Original entry on oeis.org

1, 3, 19, 223, 4771, 190023, 14441659, 2130394591, 616038609331, 351153716973303, 395928966997611499, 885010943452285951183, 3928049212346654960720611, 34658088824057172975437120103, 608435145369338712372672919898779, 21266998855813018955669706360248449471
Offset: 1

Views

Author

Paul D. Hanna, Jan 15 2008

Keywords

Examples

			L.g.f.: A(x) = x + 3*x^2/2 + 19*x^3/3 + 223*x^4/4 + 4771*x^5/5 +...
A(x) = log(1 + x + 2x^2 + 8x^3 + 64x^4 + 1024x^5 +...+ 2^(n(n-1)/2)*x^n +...).
		

Crossrefs

Programs

  • Mathematica
    max = 14; s = Log[Sum[2^(k*(k-1)/2)*x^k, {k, 0, max}]] + O[x]^(max+1); CoefficientList[s, x]*Range[0, max] // Rest (* Jean-François Alcover, Sep 03 2017 *)
  • PARI
    a(n)=n*polcoeff(log(sum(k=0,n,2^(k*(k-1)/2)*x^k +x*O(x^n))),n)
Showing 1-2 of 2 results.