A136659 Unsigned third column (k=2) of triangle A136656 divided by 4.
1, 9, 75, 660, 6300, 65520, 740880, 9072000, 119750400, 1696464000, 25686460800, 414096883200, 7083236160000, 128152088064000, 2445351068160000, 49084865077248000, 1033983353475072000, 22808456326656000000, 525810946517176320000, 12645008187498086400000
Offset: 0
References
- Charalambos A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, Table 8.3, p. 311, with s=-2, k=2 column/4.
Crossrefs
Programs
-
Mathematica
a[n_] := (n + 8)*(n + 1)*(n + 3)!/48; Array[a, 20, 0] (* Amiram Eldar, Aug 31 2025 *)
Formula
a(n) = |A136656(n+2,2)|/4, n>=0.
E.g.f.: (2+6*x-3*x^2)/(2*(1-x)^6) (derived from the one given for the column k=2 under A136656).
a(n) = (n+4)!/2 * sum((k+1)!/(k+4)!,k=1..n), with offset 1. - Gary Detlefs, Jul 27 2010
a(n) = (1/48) * (n+8)*(n+1)*(n+3)!. - Gary Detlefs, Aug 03 2010
From Amiram Eldar, Aug 31 2025: (Start)
Sum_{n>=0} 1/a(n) = 44836/245 - 480*e/7 - 24*gamma/7 + 24*ExpIntegralEi(1)/7, where e = A001113, gamma = A001620, and ExpIntegralEi(1) = A091725.
Sum_{n>=0} (-1)^n/a(n) = 39724/245 - 3120/(7*e) + 24*gamma/7 - 24*ExpIntegralEi(-1)/7, where ExpIntegralEi(-1) = -A099285. (End)
Comments