A136665 Triangle of coefficients of Hermite-like analog of A053120 Chebyshev's T(n, x) polynomials (powers of x in increasing order): p(x,n)=2*x*p(x,n-1)-n*p(x,n-2).
1, 0, 1, -2, 0, 2, 0, -7, 0, 4, 8, 0, -22, 0, 8, 0, 51, 0, -64, 0, 16, -48, 0, 234, 0, -176, 0, 32, 0, -453, 0, 916, 0, -464, 0, 64, 384, 0, -2778, 0, 3240, 0, -1184, 0, 128, 0, 4845, 0, -13800, 0, 10656, 0, -2944, 0, 256, -3840, 0, 37470, 0, -60000, 0, 33152, 0, -7168, 0, 512
Offset: 1
Examples
{1}, {0, 1}, {-2, 0, 2}, {0, -7, 0, 4}, {8, 0, -22, 0, 8}, {0, 51, 0, -64, 0, 16}, {-48, 0, 234, 0, -176, 0, 32}, {0, -453, 0, 916, 0, -464,0, 64}, {384, 0, -2778, 0, 3240, 0, -1184, 0, 128}, {0, 4845, 0, -13800, 0, 10656, 0, -2944, 0,256}, {-3840, 0, 37470, 0, -60000, 0, 33152, 0, -7168, 0, 512}
Crossrefs
Cf. A053120.
Programs
-
Mathematica
P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = 2*x*P[x, n - 1] - n*P[x, n - 2]; Table[ExpandAll[P[x, n]], {n, 0, 10}]; a = Table[CoefficientList[P[x, n], x], {n, 0, 10}]; Flatten[a]
Formula
p(x,n)=2*x*p(x,n-1)-n*p(x,n-2).
Comments