A136668 Triangle read by rows: coefficients of a Bessel polynomial recursion: P(x, n) = 2*(n-1)*P(x, n - 1)/x - n*P(x, n - 2) with substitution x -> 1/y.
1, 0, 1, -2, 0, 2, 0, -11, 0, 8, 8, 0, -74, 0, 48, 0, 119, 0, -632, 0, 384, -48, 0, 1634, 0, -6608, 0, 3840, 0, -1409, 0, 24032, 0, -81984, 0, 46080, 384, 0, -32798, 0, 389312, 0, -1178496, 0, 645120, 0, 18825, 0, -741056, 0, 6966848, 0, -19270656, 0, 10321920
Offset: 1
Examples
Triangle begins as: 1; 0, 1; -2, 0, 2; 0, -11, 0, 8; 8, 0, -74, 0, 48; 0, 119, 0, -632, 0, 384; -48, 0, 1634, 0, -6608, 0, 3840; 0, -1409, 0, 24032, 0, -81984, 0, 46080; ....
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1972, 10th edition, (and various reprintings), p. 631.
Links
- G. C. Greubel, Table of n, a(n) for the first 25 rows, flattened
Programs
-
Mathematica
P[x, 0]= 1; P[x, 1]= 1/x; P[x_, n_]:= P[x, n] = 2*(n-1)*P[x, n-1]/x - n*P[x, n-2]; Table[ExpandAll[P[x, n] /. x -> 1/y], {n, 0, 10}]; Table[CoefficientList[P[x, n] /. x -> 1/y, y], {n, 0, 10}]//Flatten
Formula
P(x,0) = 1; P(x,1) = 1/x; P(x, n) = 2*(n-1)*P(x, n - 1)/x - n*P(x, n - 2); with substitution of x to 1/y.
Comments