cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A136689 Triangular sequence of q-Fibonacci polynomials for s=3: F(x,n) = x*F(x,n-1) + s*F(x,n-2).

Original entry on oeis.org

1, 0, 1, 3, 0, 1, 0, 6, 0, 1, 9, 0, 9, 0, 1, 0, 27, 0, 12, 0, 1, 27, 0, 54, 0, 15, 0, 1, 0, 108, 0, 90, 0, 18, 0, 1, 81, 0, 270, 0, 135, 0, 21, 0, 1, 0, 405, 0, 540, 0, 189, 0, 24, 0, 1, 243, 0, 1215, 0, 945, 0, 252, 0, 27, 0, 1, 0, 1458, 0, 2835, 0, 1512, 0
Offset: 1

Views

Author

Roger L. Bagula, Apr 06 2008

Keywords

Comments

Row sums: 1, 1, 4, 7, 19, 40, 97, 217, 508, 1159, 2683, ... = A006130(n-1).

Examples

			Triangle begins:
    1;
    0,   1;
    3,   0,    1;
    0,   6,    0,   1;
    9,   0,    9,   0,   1;
    0,  27,    0,  12,   0,   1;
   27,   0,   54,   0,  15,   0,   1;
    0, 108,    0,  90,   0,  18,   0,  1;
   81,   0,  270,   0, 135,   0,  21,  0,  1;
    0, 405,    0, 540,   0, 189,   0, 24,  0, 1;
  243,   0, 1215,   0, 945,   0, 252,  0, 27, 0, 1;
  ...
		

Crossrefs

Programs

  • Maple
    A136689 := proc(n) option remember: if(n<=1)then return n: else return x*procname(n-1)+3*procname(n-2): fi: end:
    seq(seq(coeff(A136689(n), x, m), m=0..n-1), n=1..10); # Nathaniel Johnston, Apr 27 2011
  • Mathematica
    s=2; F[x_, n_]:= F[x, n]= If[n<2, n, x*F[x, n-1] + s*F[x, n-2]]; Table[
    CoefficientList[F[x, n], x], {n,10}]//Flatten
    F[n_, x_, s_, q_]:= Sum[QBinomial[n-j-1, j, q]*q^Binomial[j+1, 2]*x^(n-2*j-1) *s^j, {j, 0, Floor[(n-1)/2]}]; Table[CoefficientList[F[n,x,3,1], x], {n, 1, 10}]//Flatten (* G. C. Greubel, Dec 16 2019 *)
  • Sage
    def f(n,x,s,q): return sum( q_binomial(n-j-1, j, q)*q^binomial(j+1,2)*x^(n-2*j-1)*s^j for j in (0..floor((n-1)/2)))
    def A136689_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( f(n,x,3,1) ).list()
    [A136689_list(n) for n in (1..10)] # G. C. Greubel, Dec 16 2019

Formula

F(x,n) = x*F(x,n-1) + s*F(x,n-2), where F(x,0)=0, F(x,1)=1 and s=3.
Showing 1-1 of 1 results.