A136750
G.f.: A(x) = x/(1-x) o x/(1-x^2) o x/(1-x^3) o x/(1-x^4) o..., composition of functions x/(1-x^n) for n = ...,3,2,1.
Original entry on oeis.org
1, 1, 2, 4, 8, 17, 35, 74, 155, 329, 692, 1464, 3098, 6553, 13873, 29361, 62165, 131638, 278787, 590357, 1250337, 2648108, 5608735, 11879607, 25161906, 53295451, 112886028, 239108343, 506466366, 1072776347, 2272316123, 4813150684
Offset: 0
G.f.: A(x) is the limit of composition of functions x/(1-x^n):
F_1(x) = x/(1-x)
F_2(x) = F_1(x/(1-x^2)) = x + x^2 + 2x^3 + 3x^4 + 5x^5 + 8*x^6 + 13x^7 +...
F_3(x) = F_2(x/(1-x^3)) = x + x^2 + 2x^3 + 4x^4 + 7x^5 + 14x^6 + 26x^7 +...
F_4(x) = F_3(x/(1-x^4)) = x + x^2 + 2x^3 + 4x^4 + 8x^5 + 16x^6 + 32x^7 +...
F_5(x) = F_4(x/(1-x^5)) = x + x^2 + 2x^3 + 4x^4 + 8x^5 + 17x^6 + 34x^7 +...
F_6(x) = x/(1-x) o x/(1-x^2) o x/(1-x^3) o x/(1-x^4) o x/(1-x^5) o x/(1-x^6) =
x + x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 17*x^6 + 35*x^7 + 73*x^8 + 152*x^9 +...
-
{a(n)=local(A=x+x*O(x^n));if(n<=0,0,for(i=1,n,A=A/(1-A^(n-i+1)));polcoeff(A,n))}
for(n=1,30,print1(a(n),", "))
A277180
E.g.f.: A(x) = ... x*exp(x^4) o x*exp(x^3) o x*exp(x^2) o x*exp(x), the composition of functions x*exp(x^n) for n = 1,2,3,...
Original entry on oeis.org
1, 2, 9, 100, 1205, 18006, 350077, 8088536, 211371561, 6176234890, 200898827921, 7219180413732, 284177412817597, 12162803253287246, 562046000617917285, 27867599169654763696, 1475047571057004959057, 83000104748219010488850, 4947512767013757600177049, 311464596400042198210554620, 20652342444419128752639269541, 1438800618216725748602640496342
Offset: 1
E.g.f.: A(x) = x + 2*x^2/2! + 9*x^3/3! + 100*x^4/4! + 1205*x^5/5! + 18006*x^6/6! + 350077*x^7/7! + 8088536*x^8/8! + 211371561*x^9/9! + 6176234890*x^10/10! + 200898827921*x^11/11! + 7219180413732*x^12/12! +...
such that A(x) is the limit of composition of functions x*exp(x^n):
A(x) = ... o x*exp(x^5) o x*exp(x^4) o x*exp(x^3) o x*exp(x^2) o x*exp(x)
working from right to left.
Illustration of generating method.
Start with F_0(x) = x and then continue as follows.
F_1(x) = x*exp(x),
F_2(x) = F_1(x) * exp( F_1(x)^2 ),
F_3(x) = F_2(x) * exp( F_2(x)^3 ),
F_4(x) = F_3(x) * exp( F_3(x)^4 ),
...
F_{n+1}(x) = F_{n}(x) * exp( F_{n}(x)^(n+1) )
...
the limit of which equals the e.g.f. A(x).
The above series begin:
F_1(x) = x + 2*x^2/2! + 3*x^3/3! + 4*x^4/4! + 5*x^5/5! + 6*x^6/6! +...
F_2(x) = x + 2*x^2/2! + 9*x^3/3! + 76*x^4/4! + 605*x^5/5! + 5046*x^6/6! +...
F_3(x) = x + 2*x^2/2! + 9*x^3/3! + 100*x^4/4! + 1085*x^5/5! + 13686*x^6/6! +...
F_4(x) = x + 2*x^2/2! + 9*x^3/3! + 100*x^4/4! + 1205*x^5/5! + 17286*x^6/6! +...
...
RELATED SERIES.
The logarithm of A(x)/x begins:
log(A(x)/x) = x + 2*x^2/2! + 18*x^3/3! + 144*x^4/4! + 1660*x^5/5! + 27480*x^6/6! + 548394*x^7/7! + 12402992*x^8/8! + 316789848*x^9/9! + 9158652720*x^10/10! + 296955697390*x^11/11! + 10666960742328*x^12/12! +...+ A277182(n)*x^n/n! +...
The series reversion of the e.g.f. begins:
Series_Reversion(A(x)) = x - 2*x^2/2! + 3*x^3/3! - 40*x^4/4! + 505*x^5/5! - 4776*x^6/6! + 53179*x^7/7! - 1065296*x^8/8! + 25478289*x^9/9! - 480072880*x^10/10! + 9400182451*x^11/11! - 300620572968*x^12/12! +...
-
{a(n) = my(A=x +x*O(x^n)); if(n<=0, 0, for(i=1, n, A = A*exp(A^i)); n!*polcoeff(A, n))}
for(n=1,30,print1(a(n),", "))
-
{a(n) = my(A=x +x*O(x^n)); if(n<=0, 0, for(i=1, n, A = subst(A,x, x*exp(x^(n-i+1) +x*O(x^n))))); n!*polcoeff(A, n)}
for(n=1,30,print1(a(n),", "))
A277181
E.g.f.: A(x) = x*exp(x) o x*exp(x^2) o x*exp(x^3) o x*exp(x^4) o ..., the composition of functions x*exp(x^n) for n=...,3,2,1.
Original entry on oeis.org
1, 2, 9, 76, 605, 7326, 97237, 1414904, 24130521, 467773210, 9636459041, 215484787332, 5351427245749, 141098897750006, 3995090542811565, 120415709525270896, 3833710980240095537, 130061101059127375794, 4649348119132468282681, 174231442774945244111420, 6859230825811289134828941, 282654139723294546295799502, 12162998707984268597918477189, 546138551651775603897277518696
Offset: 1
E.g.f.: A(x) = x + 2*x^2/2! + 9*x^3/3! + 76*x^4/4! + 605*x^5/5! + 7326*x^6/6! + 97237*x^7/7! + 1414904*x^8/8! + 24130521*x^9/9! + 467773210*x^10/10! + 9636459041*x^11/11! + 215484787332*x^12/12! +...
such that A(x) is the limit of composition of functions x*exp(x^n):
A(x) = x*exp(x) o x*exp(x^2) o x*exp(x^3) o x*exp(x^4) o x*exp(x^5) o ...
working from left to right.
Illustration of generating method.
Start with F_0(x) = x and then continue as follows.
F_1(x) = x*exp(x),
F_2(x) = F_1( x*exp(x^2) ),
F_3(x) = F_2( x*exp(x^3) ),
F_4(x) = F_3( x*exp(x^4) ),
F_5(x) = F_4( x*exp(x^5) ),
...
F_{n+1}(x) = F_{n}( x*exp(x^(n+1)) ),
...
the limit of which equals the e.g.f. A(x).
The above series begin:
F_1(x) = x + 2*x^2/2! + 3*x^3/3! + 4*x^4/4! + 5*x^5/5! + 6*x^6/6! +...
F_2(x) = x + 2*x^2/2! + 9*x^3/3! + 52*x^4/4! + 245*x^5/5! + 1926*x^6/6! +...
F_3(x) = x + 2*x^2/2! + 9*x^3/3! + 76*x^4/4! + 485*x^5/5! + 5166*x^6/6! +...
F_4(x) = x + 2*x^2/2! + 9*x^3/3! + 76*x^4/4! + 605*x^5/5! + 6606*x^6/6! +...
F_5(x) = x + 2*x^2/2! + 9*x^3/3! + 76*x^4/4! + 605*x^5/5! + 7326*x^6/6! +...
...
A related series begins:
Series_Reversion(A(x)) = x - 2*x^2/2! + 3*x^3/3! - 16*x^4/4! + 385*x^5/5! - 6696*x^6/6! + 104419*x^7/7! - 1785344*x^8/8! + 37367649*x^9/9! - 986989600*x^10/10! + 30811625251*x^11/11! - 1031073660288*x^12/12! +...
-
{a(n) = my(A=x +x*O(x^n)); if(n<=0, 0, for(i=1, n, A = subst(A,x, x*exp(x^i +x*O(x^n))))); n!*polcoeff(A, n)}
for(n=1,30,print1(a(n),", "))
-
{a(n) = my(A=x+x*O(x^n)); if(n<=0, 0, for(i=1, n, A = A*exp(A^(n-i+1)))); n!*polcoeff(A, n)}
for(n=1,30,print1(a(n),", "))
A136752
G.f.: A(x) = x/(1-x) o x/(1-x^2) o x/(1-x^4) o x/(1-x^8) o..., composition of functions x/(1 - x^{2^n}) for n=0,1,2,3,...
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 19, 33, 61, 108, 198, 354, 645, 1159, 2106, 3795, 6874, 12405, 22457, 40560, 73374, 132578, 239782, 433362, 783602, 1416401, 2560953, 4629393, 8369741, 15130440, 27354520, 49451349, 89401972, 161622356, 292191262
Offset: 0
G.f.: A(x) is the limit of composition of functions x/(1-x^{2^n}):
F_0(x) = x/(1-x)
F_1(x) = F_1(x/(1-x^2)) = x + x^2 + 2x^3 + 3x^4 + 5x^5 + 8*x^6 + 13x^7 +...
F_2(x) = F_2(x/(1-x^4)) = x + x^2 + 2x^3 + 3x^4 + 6x^5 + 10x^6 + 19x^7 +...
F_3(x) = x/(1-x) o x/(1-x^2) o x/(1-x^4) o x/(1-x^8) =
x + x^2 + 2x^3 + 3x^4 + 6x^5 + 10x^6 + 19x^7 + 33x^8 + 61x^9 + 108x^10 +...
-
{a(n)=local(A=x+x*O(x^n));if(n<=0,0,m=#binary(n+1); for(i=1,m,A=A/(1-A^(2^(m-i))));polcoeff(A,n))}
A136753
G.f.: A(x) = ...o x/(1-x^8) o x/(1-x^4) o x/(1-x^2) o x/(1-x), composition of functions x/(1 - x^{2^n}) for n=...,3,2,1,0.
Original entry on oeis.org
1, 1, 2, 4, 9, 21, 52, 134, 355, 955, 2590, 7052, 19246, 52638, 144368, 397468, 1099720, 3060936, 8577496, 24210808, 68843806, 197176726, 568585576, 1649739332, 4812731846, 14105205846, 41498665884, 122469937048
Offset: 1
G.f.: A(x) is the limit of composition of functions x/(1-x^{2^n}):
F_0(x) = x/(1-x)
F_1(x) = x/(1-x^2) o F_0(x) = x + x^2 + 2x^3 + 4x^4 + 8x^5 + 16x^6 +...
F_2(x) = x/(1-x^4) o F_1(x) = x + x^2 + 2x^3 + 4x^4 + 9x^5 + 21x^6 +...
F_3(x) = x/(1-x^8) o F_2(x) = x + x^2 + 2x^3 + 4x^4 + 9x^5 + 21x^6 +...
F_4(x) = x/(1-x^16) o x/(1-x^8) o x/(1-x^4) o x/(1-x^2) o x/(1-x) =
x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 21*x^6 + 52*x^7 + 134*x^8 + 355*x^9 +...
-
{a(n)=local(A=x+x*O(x^n));if(n<=0,0,for(i=0,#binary(n+1),A=A/(1-A^(2^i)));polcoeff(A,n))}
A206721
G.f.: A(x) = ...o x/(1-x^7) o x/(1-x^5) o x/(1-x^3) o x/(1-x), a composition of functions x/(1-x^(2*n-1)) for n=...3,2,1.
Original entry on oeis.org
1, 1, 1, 2, 5, 12, 28, 65, 155, 387, 1002, 2641, 7016, 18743, 50321, 135608, 366399, 992221, 2693705, 7333666, 20026582, 54858122, 150739957, 415479332, 1148563576, 3183963911, 8848963329, 24650364462, 68810859415, 192439812663, 539072534278, 1512285566266
Offset: 1
G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 5*x^5 + 12*x^6 + 28*x^7 + 65*x^8 +...
where A(x) is the limit of composition of functions x/(1-x^(2*n-1)):
F_1(x) = x/(1-x)
F_2(x) = x/(1-x^3) o F_1(x) = x + x^2 + x^3 + 2*x^4 + 5*x^5 + 11*x^6 +...
F_3(x) = x/(1-x^5) o F_2(x) = x + x^2 + x^3 + 2*x^4 + 5*x^5 + 12*x^6 +...
F_4(x) = x/(1-x^7) o x/(1-x^5) o x/(1-x^3) o x/(1-x); ...
-
{a(n)=local(A=x+x*O(x^n)); if(n<=0, 0, for(i=1, n, A=A/(1-A^(2*i-1))); polcoeff(A, n))}
for(n=1,45,print1(a(n),", "))
Showing 1-6 of 6 results.
Comments