cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A136793 Number of unlabeled rooted trees with n 4-colored nodes.

Original entry on oeis.org

4, 16, 104, 752, 5996, 50512, 444256, 4027360, 37383044, 353486320, 3393093696, 32976302800, 323839605124, 3208549483216, 32033691247528, 321955764477936, 3254812520854980, 33075467402453872, 337670437247448728, 3461635652745799136, 35620112071990294784
Offset: 1

Views

Author

Christian G. Bower, Jan 21 2008

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 293 (4.1.60).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n<2, n*4, (add(add(d*
          a(d), d=divisors(j))*a(n-j), j=1..n-1))/(n-1))
        end:
    seq(a(n), n=1..25);  # Alois P. Heinz, May 16 2014
  • Mathematica
    a[1] = 4; a[n_] := a[n] = Sum[ Sum[ d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-1}]/(n-1); Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)

Formula

Shifts left and divides by 4 under EULER transform. a(n) = A136794(n)*2 = A052763(n)*4.

A136796 Number of labeled marked rooted trees with n nodes.

Original entry on oeis.org

2, 16, 288, 8192, 320000, 15925248, 963780608, 68719476736, 5642219814912, 524288000000000, 54394721876836352, 6232805962420322304, 781754012972500385792, 106530593546206374264832, 15672832819200000000000000, 2475880078570760549798248448
Offset: 1

Views

Author

Christian G. Bower, Jan 21 2008

Keywords

Comments

A marked rooted tree is a rooted tree where each node and edge is marked as + or -.

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 293 (4.1.60).

Crossrefs

Cf. A136794 (unlabeled version), A136797 (tree version).

Programs

Formula

E.g.f.: B(4*x)/2 where B(x) is e.g.f. of A000169.
a(n) = A052764(n)*2.
a(n) = 2^(2*n-1) * n^(n-1). - Vaclav Kotesovec, Mar 29 2014

Extensions

More terms from Vincenzo Librandi, Mar 29 2014

A136795 Number of unlabeled marked trees with n nodes.

Original entry on oeis.org

2, 6, 20, 112, 662, 4596, 34032, 268280, 2201634, 18679362, 162611904, 1446148032, 13090979394, 120303384120, 1119971272340, 10544483234056, 100261309326082, 961692928106614, 9296529143261548, 90497666895840376
Offset: 1

Views

Author

Christian G. Bower, Jan 21 2008

Keywords

Comments

A marked tree is a tree where each node and edge is marked as + or -.

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 293 (4.1.60).

Crossrefs

Cf. A136794 (rooted tree version), A136797 (labeled version).

Formula

G.f.: B(x) - B(x)^2 + B(x^2) where B(x) is g.f. of A136794.

A384867 Array A(T,k) read down antidiagonals: Number of typed decorated trees of cardinality T on k vertices with D=2 decorations.

Original entry on oeis.org

2, 4, 2, 14, 8, 2, 52, 52, 12, 2, 214, 376, 114, 16, 2, 916, 2998, 1228, 200, 20, 2, 4116, 25256, 14568, 2864, 310, 24, 2, 18996, 222128, 18, 3132, 45140, 5540, 444, 28, 2
Offset: 1

Views

Author

R. J. Mathar, Jun 11 2025

Keywords

Comments

Is the array obtained by deleting each second column of A242249, transposing, and multiplying each entry by 2?

Examples

			Array starts with rows T=1,2,3.. and columns k=1,2,3.. as
  2  4   14    52     214      916       4116      18996
  2  8   52   376    2998    25256     222128    2013680
  2 12  114  1228   14568   183132    2401410    32465640
  2 16  200  2864   45140   754640   13156232   236477200
  2 20  310  5540  108930  2272804   49446000  1109081180
  2 24  444  9512  224154  5606520  146204792  3930863232
  2 28  602 15036  413028 12043500  366122190 11475005616
  2 32  784 22368  701768 23373216  811575408 29052861280
  2 36  990 31764 1120590 41969844 1638712716 65965167108
  2 40 1220 43480 1703710 70875208 3073688160
		

Crossrefs

Cf. A242249 (D=1), A038055 (row 1), A136794 (row 2).
Showing 1-4 of 4 results.