A136807 Hankel transform of double factorial numbers n!*2^n=A000165(n).
1, 4, 256, 589824, 86973087744, 1282470362637926400, 2723154477021188283432960000, 1133321924829207204666583887642624000000, 120746421332702772771144114237731253721340313600000000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..28
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
Programs
-
Magma
[1] cat [(&*[(2*k)^(2*(n-k+1)): k in [1..n]]): n in [1..10]]; // G. C. Greubel, Oct 14 2018
-
Mathematica
Table[Product[(2k)^(2(n-k+1)),{k,n}],{n,0,10}] (* Harvey P. Dale, Apr 11 2013 *)
-
PARI
for(n=0,10, print1(prod(k=1,n,(2*k)^(2*(n-k+1))), ", ")) \\ G. C. Greubel, Oct 14 2018
Formula
a(n) = Product_{k=1..n} (2k)^(2(n-k+1)).
a(n) ~ 2^((n+1)^2) * Pi^(n+1) * n^(n^2 + 2*n + 5/6) / (A^2 * exp(3*n^2/2 + 2*n - 1/6)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Feb 24 2019
Comments