cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A137116 Numbers k such that k and k^2 use only the digits 2, 5, 7, 8 and 9.

Original entry on oeis.org

5, 27, 77, 85, 527, 727, 7227, 9777, 28277, 29585, 88277, 99277, 278527, 298827, 2788527, 2789227, 5289227, 8875727, 9889277, 22925527, 27797977, 29879585, 52898827, 85298827, 88875527, 99789227, 99988777, 278889277, 287279585, 292898827, 297875527, 299929585, 527252527, 528982977, 727528527, 727825527, 727925527, 988579585, 992587527
Offset: 1

Views

Author

Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008

Keywords

Comments

Generated with DrScheme.

Examples

			727872928279585^2 = 529798999722297889227927772225.
		

Crossrefs

Programs

A137066 Numbers k such that k and k^2 use only the digits 2, 3, 4 and 5.

Original entry on oeis.org

2, 5, 235, 2335, 23335, 233335, 2333335, 2354235, 23333335, 233333335, 2333333335, 2333524235, 23333333335, 23333524235, 233333333335, 2333333333335, 23333333333335, 233333333333335, 2333333333333335, 23333333333333335, 233333333333333335
Offset: 1

Views

Author

Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008

Keywords

Comments

Generated with DrScheme.
Contains 2*10^m + (10^m-1)/3 + 2 for m >= 2. Are these all the terms > 23333524235? There are no others with up to 25 digits. - Robert Israel, Jul 02 2018
There are no others than those of that form with up to 35 digits. - Michael S. Branicky, May 25 2021

Examples

			23333524235^2 = 544453353225332335225.
		

Crossrefs

Cf. A137110.

Programs

  • PARI
    isokd(x) = (x < 2) || (x > 5);
    isok(n) = !#select(x->isokd(x), digits(n)) && !#select(x->isokd(x), digits(n^2)); \\ Michel Marcus, Jul 02 2018
    
  • Python
    # uses auptod in A137110
    print(auptod(16, only="2345")) # Michael S. Branicky, May 25 2021

A137093 Numbers k such that k and k^2 use only the digits 2, 4, 5 and 6.

Original entry on oeis.org

2, 5, 25, 65, 665, 6665, 66665, 666665, 6666665, 25625465, 65226242, 66666665, 666666665, 6666666665, 66666666665, 666666666665, 6666666666665, 66666666666665, 666666666666665, 6666666666666665, 66666666666666665, 666666666666666665, 6666666666666666665
Offset: 1

Views

Author

Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008

Keywords

Comments

Generated with DrScheme.
Contains 6*(10^n - 1)/9 - 1 for n >= 1. There are no others than those of this form with up to 35 digits. - Michael S. Branicky, May 25 2021

Examples

			25625465^2 = 656664456466225.
		

Crossrefs

Cf. A137110.

Programs

  • Mathematica
    fQ[n_] := Block[{d = DigitCount@ n}, Total@ Delete[d, {{2}, {4}, {5}, {6}}] == 0]; Select[Range@ 100000, fQ@ # && fQ[#^2] &] (* Michael De Vlieger, Apr 29 2015 *)
  • Python
    from itertools import product
    A137093_list = [int(''.join(a)) for l in range(1,10) for a in product('2456',repeat = l) if set(str(int(''.join(a))**2)) <= {'2','4','5','6'}] # Chai Wah Wu, Apr 29 2015
    
  • Python
    # uses auptod in A137110
    print(auptod(16, only="2456")) # Michael S. Branicky, May 25 2021

Extensions

a(20)-a(23) from Michael S. Branicky, May 25 2021

A137117 Numbers k such that k and k^2 use only the digits 2, 5, 7 and 9.

Original entry on oeis.org

5, 27, 77, 527, 7227, 27797977
Offset: 1

Views

Author

Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008

Keywords

Comments

Generated with DrScheme.
No further terms up to 10^12. - Harvey P. Dale, Oct 02 2017
No further terms up to 10^38. - Michael S. Branicky, May 27 2021

Examples

			27797977^2 = 772727525292529.
		

Crossrefs

Programs

  • Mathematica
    With[{c={2,5,7,9}},Table[Select[FromDigits/@Tuples[c,n],SubsetQ[c, IntegerDigits[ #^2]]&],{n,8}]]//Flatten (* Harvey P. Dale, Oct 02 2017 *)
  • Python
    # uses auptod in A137110
    print(auptod(16, only="2579")) # Michael S. Branicky, May 27 2021
Showing 1-4 of 4 results.