A137147
Numbers k such that k and k^2 use only the digits 5, 6, 7, 8 and 9.
Original entry on oeis.org
76, 87, 766, 887, 7666, 8887, 9786, 76587, 76666, 87576, 759576, 766666, 869866, 869867, 886886, 888587, 988866, 7666666, 8766867, 8885887, 76587576, 76666666, 76789686, 86998666, 87565786, 87685676, 88766867, 97759786, 97957576, 766666666, 875765766, 886885887, 887579686, 977699687
Offset: 1
Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008
989878759589576^2 = 979859958686597599779967859776.
Cf.
A277959,
A277960,
A277961,
A295005, ...,
A295009 (squares with largest digit = 2, 3, 4, 5, ..., 9).
A154635
Ratio of the sum of the bends of the 5-dimensional spheres added in the n-th generation of Apollonian packing to the sum of the bends of the initial configuration of seven mutually tangent spheres.
Original entry on oeis.org
1, 2, 15, 108, 774, 5544, 39708, 284400, 2036952, 14589216, 104492016, 748400832, 5360254560, 38391631488, 274971524544, 1969422407424, 14105550112128, 101027866452480, 723589630947072, 5182549848861696, 37118861005211136, 265855588948518912
Offset: 0
Starting with seven 5-dimensional spheres with bends 0,0,1,1,1,1,1 summing to 5, the first derived generation has seven spheres, with bends 1,1,1,1,1,5/2,5/2 summing to 10. So a(1) = 10/5 = 2.
Showing 1-2 of 2 results.
Comments