A137169 a(0) = 2; for n>0, a(n) = smallest number m > a(n-1) such that both m-n and m+n are primes.
2, 4, 5, 8, 9, 12, 13, 24, 39, 50, 51, 72, 85, 96, 117, 122, 123, 156, 175, 192, 213, 218, 219, 234, 247, 252, 255, 256, 279, 360, 367, 378, 399, 400, 423, 432, 455, 486, 525, 530, 531, 612, 619, 630, 657, 664, 687, 774, 775, 810, 837, 860, 915, 930, 937, 942
Offset: 0
Examples
4-1=3 prime, 4+1=5 prime; 5-2=3, 5+2=7; 8-3=5, 8+3=11; 9-4=5, 9+4=13;
Crossrefs
See A087711 for another version.
Programs
-
Maple
A137169 := proc(n) option remember ; if n = 0 then RETURN(2) ; fi ; for a from A137169(n-1)+1 do if isprime(a-n) and isprime(a+n) then RETURN(a) ; fi ; od: end: seq(A137169(n),n=0..80) ; # R. J. Mathar, Apr 09 2008
-
Mathematica
s = ""; k = 0; For[i = 2, i < 22^2, If[PrimeQ[i - k] && PrimeQ[i + k], s = s <> ToString[i] <> ","; k++ ]; i++ ]; Print[s]
Extensions
More terms from R. J. Mathar, Apr 09 2008
Typo in Mathematica code corrected by Vincenzo Librandi, Jun 15 2013
Comments