A137207 Number of exceptional sets of roots of type D_n. Also the number of unordered factorizations of the Coxeter element.
12, 87, 584, 3835, 25008, 162792, 1060048, 6910695, 45119100, 295038315, 1932260256, 12673336052, 83236707232, 547388545740, 3604063891104, 23755630474079, 156740823815940, 1035157282013085, 6842413166034600, 45265133475699795, 299671339559444160, 1985322768625822080
Offset: 3
Keywords
Examples
a(3)=12 because D3 is the same as A3.
Links
- F. Chapoton Cluster algebras
Programs
-
MuPAD
modu_NC_D:=proc(n) begin (16*n*n-41*n+24)/n/(2*n-1)*binomial(3*n-5,n-2) end;
-
Sage
def A137207(n): return (16*n*n-41*n+24)*binomial(3*n-5,n-2)/n/(2*n-1)
Formula
a(n) = (2*(n-1)/(2*n-1))*binomial(3*n-3,n-1)-binomial(3*n-5,n-2)+4*binomial(3*n-3,n-3).
a(n) = (16*n^2-41*n+24)/(n*(2*n-1))*binomial(3*n-5,n-2).
Extensions
a(22)-a(24) from Stefano Spezia, Feb 29 2024