A137211 Generalized or s-Catalan numbers.
1, 1, 1, 1, 2, 3, 1, 5, 12, 22, 1, 14, 55, 140, 285, 1, 42, 273, 969, 2530, 5481, 1, 132, 1428, 7084, 23751, 62832, 141778, 1, 429, 7752, 53820, 231880, 749398, 1997688, 4638348, 1, 1430, 43263, 420732, 2330445, 9203634, 28989675, 77652024
Offset: 1
Keywords
Examples
{1}, {1, 1}, {1, 2, 3}, {1, 5, 12, 22}, {1, 14, 55, 140, 285}, {1, 42, 273, 969, 2530, 5481}, {1, 132, 1428, 7084, 23751, 62832, 141778}, {1, 429, 7752, 53820, 231880, 749398, 1997688, 4638348}
Links
- Heinrich Niederhausen, Catalan Traffic at the Beach, Electronic Journal of Combinatorics, Volume 9 (2002), #R33.
- A. Regev, The Central Component of a Triangulation, J. Int. Seq. 16 (2013) #13.4.1
- Alison Schuetz and Gwyneth Whieldon, Polygonal Dissections and Reversions of Series, arXiv:1401.7194 [math.CO], 2014.
- P. Stanica, p^q-Catalan numbers and squarefree binomial coefficients, J. Numb. Theory 100 (2003) 203-216.
Programs
-
Mathematica
t[n_, m_] := Binomial[m*n, n]/((m - 1)*n + 1); a = Table[Table[t[n, m], {m, 1, n + 1}], {n, 0, 10}]; Flatten[a]
Formula
T(n,m) = binomial(m*n,n)/((m-1)*n+1).
Extensions
Edited by N. J. A. Sloane, May 16 2008
Comments