A137227 Triangle T(n, k) = n^(n-1) * Fibonacci(k)^(n+1) - (n-1)! * (Fibonacci(k) - 1) * Sum_{j=0..n} (n*Fibonacci(k))^j/j!, with T(n, 0) = n! and T(n, 1) = n^(n-1), read by rows.
1, 1, 1, 2, 2, 2, 6, 9, 9, 22, 24, 64, 64, 266, 708, 120, 625, 625, 4536, 17457, 108129, 720, 7776, 7776, 100392, 563088, 5709120, 52517688, 5040, 117649, 117649, 2739472, 22516209, 375217945, 5489293264, 92757410569, 40320, 2097152, 2097152, 89020752, 1076444064, 29566405440, 688833593904, 18867973329344, 513683908057152
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 2, 2, 2; 6, 9, 9, 22; 24, 64, 64, 266, 708; 120, 625, 625, 4536, 17457, 108129; 720, 7776, 7776, 100392, 563088, 5709120, 52517688; 5040, 117649, 117649, 2739472, 22516209, 375217945, 5489293264, 92757410569;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
T[n_, k_]:= If[k==0, n!, If[k==1, n^(n-1), (1/n)*(Fibonacci[k]^(n+1)*n^n - n!*(Fibonacci[k] -1)*Sum[n^j*Fibonacci[k]^j/j!, {j,0,n}])]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 06 2022 *)
-
Sage
@CachedFunction def A137227(n,k): if (k==0): return factorial(n) elif (k==1): return n^(n-1) else: return (1/n)*(fibonacci(k)^(n+1)*n^n - factorial(n)*(fibonacci(k) -1)*sum((n*fibonacci(k))^j/factorial(j) for j in (0..n))) flatten([[A137227(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 06 2022
Formula
T(n, k) = (1/n)*( n^n * Fibonacci(k)^(n+1) - n! * (Fibonacci(k) - 1) * Sum_{j=0..n} (n*Fibonacci(k))^j/j! ), with T(n, 0) = n! and T(n, 1) = n^(n-1).
Extensions
Edited by G. C. Greubel, Jan 06 2022