A137245 Decimal expansion of Sum_{p prime} 1/(p * log p).
1, 6, 3, 6, 6, 1, 6, 3, 2, 3, 3, 5, 1, 2, 6, 0, 8, 6, 8, 5, 6, 9, 6, 5, 8, 0, 0, 3, 9, 2, 1, 8, 6, 3, 6, 7, 1, 1, 8, 1, 5, 9, 7, 0, 7, 6, 1, 3, 1, 2, 9, 3, 0, 5, 8, 6, 0, 0, 3, 0, 4, 9, 1, 9, 7, 8, 1, 3, 3, 9, 9, 7, 4, 4, 6, 7, 9, 4, 6, 9, 8, 6, 5, 4, 7, 0, 0, 4, 0, 3, 8, 5, 2, 5, 5, 8, 4, 7, 9, 8, 9, 8, 9, 4, 4
Offset: 1
Examples
1.63661632335...
References
- Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.27.2, p. 186.
Links
- Karim Belabas and Henri Cohen, Computation of sum_{p prime} 1/(p^s log(p)), PARI/GP script, 2020.
- Henri Cohen, High-precision computation of Hardy-Littlewood constants, (1998).
- Henri Cohen, High-precision computation of Hardy-Littlewood constants. [pdf copy, with permission]
- P. Erdős, Note on sequences of integers no one of which is divisible by any other, J. London Math. Soc. 10 (1935), pp. 126-128, [DOI].
- P. Erdős, Some problems and results on combinatorial number theory, Graph theory and its applications: East and West (Jinan, 1986), Ann. New York Acad. Sci., 576, pp. 132-145, New York Acad. Sci., New York, 1989.
- Brady Haran and Jared Duker Lichtman, Primes and Primitive Sets, Numberphile video (2022).
- Jared Duker Lichtman, Almost primes and the Banks-Martin conjecture, arXiv:1909.00804 [math.NT], 2019.
- Jared Duker Lichtman, A proof of the Erdős primitive set conjecture, arXiv:2202.02384 [math.NT], 2022.
- Jared Duker Lichtman, Proving the Erdős Primitive Set Conjecture, Oxford Mathematics YouTube video, 2022.
- Jared Duker Lichtman, A proof of the Erdős primitive set conjecture, YouTube video from Combinatorial and additive number theory conference (CANT), 2022.
- R. J. Mathar, Twenty digits of some integrals of the prime zeta function, arXiv:0811.4739 [math.NT], 2008-2009, table in Section 2.4.
- David C. Ullrich, Re: What is Sum(1/p log p)?, posting in newsgroup sci.math.research, 11 Feb 2006.
Crossrefs
Programs
-
Mathematica
digits = 105; precision = digits + 10; tmax = 500; (* integrand considered negligible beyond tmax *) kmax = 500; (* f(k) considered negligible beyond kmax *) InLogZeta[k_] := NIntegrate[Log[Zeta[t]], {t, k, tmax}, WorkingPrecision -> precision, MaxRecursion -> 20]; f[k_] := With[{mu = MoebiusMu[k]}, If[mu == 0, 0, (mu/k^2)*InLogZeta[k]]]; s = 0; Do[s = s + f[k]; Print[k, " ", s], {k, 1, kmax}]; RealDigits[s][[1]][[1 ;; digits]] (* Jean-François Alcover, Feb 06 2021, updated Jun 22 2022 *)
-
PARI
\\ See Belabas, Cohen link. Run as SumEulerlog(1) after setting the required precision.
-
PARI
default(realprecision, 200); s=0; for(k=1, 500, s = s + moebius(k)/k^2 * intnum(x=k,[[1], 1], log(zeta(x))); print(s)); \\ Vaclav Kotesovec, Jun 12 2022
Extensions
More terms from Hugo Pfoertner, Feb 01 2020
More terms from Vaclav Kotesovec, Jun 12 2022
Comments