cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368715 Numbers that are not coprime to the maximal exponent in their prime factorization.

Original entry on oeis.org

4, 12, 16, 18, 20, 24, 27, 28, 36, 44, 48, 50, 52, 54, 60, 64, 68, 72, 76, 80, 84, 90, 92, 98, 100, 108, 112, 116, 120, 124, 126, 132, 135, 140, 144, 148, 150, 156, 160, 162, 164, 168, 172, 176, 180, 188, 189, 192, 196, 198, 204, 208, 212, 216, 220, 228, 234, 236, 240, 242, 244
Offset: 1

Views

Author

Amiram Eldar, Jan 04 2024

Keywords

Comments

Subsequence of A137257 and first differs from it at n = 51.
Numbers k such that gcd(k, A051903(k)) > 1.
Includes all the nonsquarefree terms of A336064.
The asymptotic density of this sequence is 1 - 1/zeta(2) - Sum_{k>=2} (1/(f(k+1, k) * zeta(k+1)) - 1/(f(k, k) * zeta(k))) = 0.24998449199080279703..., where f(e, m) = Product_{primes p|m} ((1-1/p^e)/(1-1/p)).

Crossrefs

Cf. A051903.
Subsequence of A013929 and A137257.
Similar sequences: A060476, A074661, A096432, A336064, A368714.

Programs

  • Mathematica
    Select[Range[210], !CoprimeQ[#, Max[FactorInteger[#][[;;, 2]]]] &]
  • PARI
    lista(kmax) = for(k = 2, kmax, if(gcd(k, vecmax(factor(k)[,2])) > 1, print1(k, ", ")));

A144976 Nonsquarefree numbers k such that k is divisible by the maximal exponent in the prime factorization of k.

Original entry on oeis.org

4, 12, 16, 18, 20, 24, 27, 28, 36, 44, 48, 50, 52, 54, 60, 68, 72, 76, 80, 84, 90, 92, 98, 100, 108, 112, 116, 120, 124, 126, 132, 135, 140, 144, 148, 150, 156, 160, 164, 168, 172, 176, 180, 188, 189, 192, 196, 198, 204, 208, 212, 216, 220, 228, 234, 236, 240, 242, 244, 252, 256, 260, 264, 268, 270, 272
Offset: 1

Views

Author

Giovanni Teofilatto, Sep 28 2008

Keywords

Comments

The asymptotic density of this sequence is A336065 - A059956 = 0.24103009315... . - Amiram Eldar, Jan 05 2024

Crossrefs

Intersection of A013929 and A336064.

Programs

  • Maple
    A051903 := proc(n) local a,ifs,p,e; a := 1 ; max( seq(op(2,p),p=ifactors(n)[2]) ); end: isA013929 := proc(n) RETURN( not isprime(n) and A051903(n) > 1 ) ; end: isA144976 := proc(n) RETURN( isA013929(n) and (n mod A051903(n)) = 0 ); end: for n from 4 to 400 do if isA144976(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Oct 24 2008
  • Mathematica
    Select[Range[300],!SquareFreeQ[#]&&Divisible[#,Max[FactorInteger[#][[All,2]]]]&] (* Harvey P. Dale, Jul 01 2017 *)
  • PARI
    is(n) = {my(e = factor(n)[, 2], emax); if(n == 1, 0, emax = vecmax(e); emax > 1 && !(n % emax));} \\ Amiram Eldar, Jan 05 2024

Formula

{A013929(i): A051903(A013929(i)) | A013929(i)}. - R. J. Mathar, Oct 24 2008

Extensions

Adapted definition, inserted 18, 20 and extended. - R. J. Mathar, Oct 24 2008
Showing 1-2 of 2 results.