A137278 Triangle read by rows: g(n,k) = number of ideals of size k in a garland (or double fence) of order n.
1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 3, 3, 3, 3, 1, 1, 4, 6, 6, 7, 6, 6, 4, 1, 1, 5, 10, 12, 14, 15, 14, 12, 10, 5, 1, 1, 6, 15, 22, 27, 32, 33, 32, 27, 22, 15, 6, 1, 1, 7, 21, 37, 50, 63, 72, 75, 72, 63, 50, 37, 21, 7, 1, 1, 8, 28, 58, 88, 118, 146, 164, 171, 164, 146, 118, 88, 58, 28, 8, 1
Offset: 0
Examples
In the garland 5..6..7..8 o..o..o..o |\/|\/|\/| |/\|/\|/\| o..o..o..o 1..2..3..4 the ideals of size 4 are 1234, 1253, 1254, 1236, 2347, 1348, 2348. The ternary strings of size 4 with total sum 4 are 0022, 0202, 0220, 2002, 2020, 2200, 0112, 0121, 0211, 1012, 1021, 2011, 1102, 1201, 2101, 1120, 1210, 2110, 1111 Applying the restriction gives 7 possible strings 0112, 0121, 1012, 2101, 1210, 2110, 1111 Triangle begins: 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 3, 3, 3, 3, 1, 1, 4, 6, 6, 7, 6, 6, 4, 1, 1, 5, 10, 12, 14, 15, 14, 12, 10, 5, 1, 1, 6, 15, 22, 27, 32, 33, 32, 27, 22, 15, 6, 1, ...
References
- T. S. Blyth and J. C. Varlet, Ockham Algebras, Oxford Science Pub. 1994.
- E. Munarini, Enumeration of order ideals of a garland, Ars Combin. 76 (2005), 185-192.
Links
- Emanuele Munarini, Mar 13 2008, Table of n, a(n) for n = 0..440 [Rows 0 through 20, flattened]
Formula
G.f.: G(x,t) = (1-x^2*t^2)/(1-(1+x+x^2)*t+x^2*t^2+x^3*t^3).
Recurrence: g(n+3,k+3) = g(n+2,k+3) + g(n+2,k+2) + g(n+2,k+1) - g(n+1,k+1) - g(n,k).
Comments