A137284 a(0)=1 and a(n) for n > 0 equals the minimal positive integer such that addition of 2^(-a(n)) to Sum_{k = 0,1,...,n-1} 2^(-a(k)) changes only trailing zeros in its decimal representation.
1, 4, 14, 47, 157, 522, 1735, 5764, 19148, 63609, 211305, 701941, 2331798, 7746066, 25731875, 85479439, 283956550, 943283242, 3133519104, 10409325148, 34579029658, 114869050115, 381586724811, 1267603661786, 4210888217270, 13988267873380, 46468020047392
Offset: 0
Examples
Start from 0; 0 + 2^(-1) = 0.5; 0.5 + 2^(-4) = 0.5625 (first digit "5" is equal to the decimal of previous number); 0.5625 + 2^(-14) = 0.56256103515625 (first digits "5625" are equal to the decimals of previous number); etc.
Formula
a(n+1) = ceiling(a(n)*log_2(10)) = ceiling(a(n)*A020862). - Conjectured by R. J. Mathar, proved by Max Alekseyev
Extensions
Edited and extended by Max Alekseyev, May 13 2009
Comments