A137298 Triangle read by rows: coefficients of a Hermite-like set of recursive polynomials that appear by integration to be orthogonal using the substitution on the Hermite recursion of n->f(n) where f(n)=A000931[n] is the Padovan sequence.
1, 0, 1, -1, 0, 1, 0, -2, 0, 1, 2, 0, -4, 0, 1, 0, 6, 0, -6, 0, 1, -6, 0, 18, 0, -9, 0, 1, 0, -30, 0, 42, 0, -13, 0, 1, 30, 0, -120, 0, 87, 0, -18, 0, 1, 0, 240, 0, -414, 0, 178, 0, -25, 0, 1, -270, 0, 1320, 0, -1197, 0, 340, 0, -34, 0, 1
Offset: 1
Examples
{1}, {0, 1}, {-1, 0, 1}, {0, -2, 0, 1}, {2, 0, -4, 0, 1}, {0, 6, 0, -6, 0, 1}, {-6, 0, 18, 0, -9, 0, 1}, {0, -30, 0, 42, 0, -13, 0, 1}, {30, 0, -120, 0, 87, 0, -18, 0, 1}, {0, 240, 0, -414, 0, 178, 0, -25, 0, 1}, {-270, 0, 1320, 0, -1197, 0, 340, 0, -34, 0, 1}
Programs
-
Mathematica
f[0] = 0; f[1] = 1;f[2]=1; f[n_] := f[n] = f[n - 2] + f[n - 3]; P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = x*P[x, n - 1] - f[n]*P[x, n - 2]; Table[ExpandAll[P[x, n]], {n, 0, 10}]; a = Table[CoefficientList[P[x, n], x], {n, 0, 10}] Flatten[a]
Formula
a(n) = a(n-2)+a(n-3): A000931(n); p(x,0)=1;p(x,1)=x; p(x,n)=x*p(x,n-1)-a(n)*p(n,n-2)
Comments